BroAPT
Release 2020.03.14

Jarry Shaw

Mar 14, 2022

CONTENTS

1 Quickstart 1
1.1 Installation e e e e e e e e e e e e e e e e 1
1.2 Usage oo e e e e e 1
1.3 Repository Structure o o ittt e e e e e e e e e e 3
2 Configurations 5
2.1 BroAPT-Daemon Server i e e e e e e 5
2.2 BroAPT-Core Framework e e e e e 8
2.3 BroAPT-App Framework e e e e e 10
3 Internal Frameworks 13
3.1 BroAPT-Core Extration Framework, 13
3.2 BroAPT-App Detection Framework e 19
3.3 Implementation Details e e e e 28
4 API Reference 31
4.1 BroAPT-Core Framework e e 31
4.2 BroAPT-App Framework e 51
4.3 BroAPT-Daemon Server e e e e e e e e e e e e e e e 74
4.4 Miscellaneous & Auxiliaryo 85
45 SystemRuntime e e e 87
4.6 Developer NOtes v v i i it e e e e e e e e e e e e e e e e 89
5 Liscensing 93
6 Indices and tables 95
Index 97

CHAPTER
ONE

QUICKSTART

1.1 Installation

Installation of the BroAPT system is rather simple. Just clone the repository or download the tarball, then voila, it’s
ready to go.

from GitHub (active repository)

git clone https://github.com/JarryShaw/BroAPT.git

or from GitLab (authentication required)

git clone https://gitlab.sjtu.edu.cn/bysj/2019bysj.git

1.2 Usage

1.2.1 broaptd Service

On Linux systems, you can register a System V service for broaptd, the main entrypoint of the BroAPT system,
a.k.a the CLI of BroAPT-Daemon server.

Important: We suppose you're installing broaptd on a CentOS or similar distribution. For macOS binaries and
Docker Compose, you may find them with darwin suffix.

For macOS services, you can register through the Launch Agent of macOS system. See launchd(8) and
launchd.plist (5) for more information.

0. Install the broaptd binary:

from bundled implementation

sudo cp source/server/bin/broapt.linux /usr/local/bin/broaptd
from cluster implementation

sudo cp cluster/daemon/bin/broapt.linux /usr/local/bin/broaptd

The binary is built using PyInstaller. Should you wish to build a suitable binary for your target system,
please refer to the . spec files at source/server/spec/ (for bundled implementation) or cluster/
daemon/spec/ (for cluster implementation).

1. Create a dotenv file named /etc/sysconfig/broaptd:

daemon kill signal
BROAPT_KILL_SIGNAL=15 # TERM

(continues on next page)

BroAPT, Release 2020.03.14

(continued from previous page)

BroAPT-Daemon server
BROAPT_SERVER_HOST="127.0.0.1"
BROAPT_SERVER_PORT=5000

path to BroAPT's docker—compose.yml

for bundled implementation
BROAPT_DOCKER_COMPOSE="/path/to/broapt/source/docker/docker—compose.linux.yml"
for cluster implementation
BROAPT_DOCKER_COMPOSE="/path/to/broapt/cluster/docker/docker-compose.linux.yml"

path to extract files
BROAPT_DUMP_PATH="/path/to/extract/file/"

path to log files

BROAPT_LOGS_PATH="/path/to/log/bro/"

path to detection APIs

for bundled implementation
BROAPT_API_ROOT="/path/to/broapt/source/client/include/api/"
for cluster implementation
BROAPT_API_ROOT="/path/to/broapt/cluster/app/include/api/"
path to API runtime logs
BROAPT_API_LOGS="/path/to/log/bro/api/"

sleep interval
BROAPT_INTERVAL=10
command retry

BROAPT_MAX_RETRY=3

2. Create a System V service fileat /etc/systemd/system/broaptd. service (works on Ubuntu 18.04):

[Unit]
Description=BroAPT Daemon

[Service]

ExecStart=/usr/local/bin/broaptd --env /etc/sysconfig/broaptd
ExecReload=/usr/bin/kill —-INT S$SMAINPID

Restart=always

RestartSec=60s

[Install]
WantedBy=multi-user.target

3. Reload daemon and enable broaptd service:

sudo systemctl daemon-reload
sudo systemctl enable broaptd.service

You may wish to check if its running now:

sudo systemctl status broaptd.service

2 Chapter 1. Quickstart

BroAPT, Release 2020.03.14

1.2.2 Docker Image

The BroAPT Docker images can be found on Docker Hub now.
* Bundled implementation: jsnbzh/broapt:latest
* Cluster implementation:
— BroAPT-Core framework: jsnbzh/broapt:core

— BroAPT-App framework: jsnbzh/broapt:app

1.2.3 Docker Compose

Even though the broaptd will already manage the Docker containers of the BroAPT system through Docker Com-
pose, you might wish to check by yourself.

Bundled Implementation

For bundled implementation, there is only one Docker container service called broapt. You can refer to the Docker
Compose file at source/docker/docker-compose.${system}.yml.

Cluster Implementation

For cluster implementation, there are two Docker container services: core for the BroAPT-Core framework
and app for the BroAPT-App framework. You can refer to the Docker Compose file at cluster/docker/
docker-compose.${system}.yml.

1.3 Repository Structure

/broapt/

— LICENSE # CC license

—— LICENSE.bsd # BSD license

— cluster # cluster (standalone) implementation
L

—— docs

broaptd.8 # manual for BroAPT-Daemon

E thesis.pdf # Bachelor's Thesis

— gitlab # GitLab submodule
— .

— source # bundled (all-in-one) implementation
I_ .

— vendor # vendors, archives & dependencies
L

1.3. Repository Structure 3

https://hub.docker.com/r/jsnbzh/broapt

BroAPT, Release 2020.03.14

4 Chapter 1. Quickstart

CHAPTER
TWO

CONFIGURATIONS

As discussed in previous sections, the BroAPT system is configurable in various ways. You can configure the outer
system from the entry CLI of BroAPT-Daemon server, and the main framework through Docker Compose environment
variables.

2.1 BroAPT-Daemon Server

2.1.1 Command Line Interface

usage: broaptd [-h] [-v] [-e ENV] [-s SIGNAL] [-t HOST] [-p PORT]
[-f DOCKER_COMPOSE] [-d DUMP_PATH] [-1 LOGS_PATH] [-r API_ROOT]
[-a API_LOGS] [-i INTERVAL] [-m MAX_RETRY]

BroAPT Daemon

optional arguments:
-h, --help show this help message and exit
-v, —-version show program's version number and exit

environment arguments:
-e ENV, —--env ENV path to dotenv file
—-s SIGNAL, --signal SIGNAL
daemon kill signal

server arguments:
-t HOST, —--host HOST the hostname to listen on
-p PORT, —--port PORT the port of the webserver

compose arguments:

—-f DOCKER_COMPOSE, --docker—-compose DOCKER_COMPOSE
path to BroAPT's compose file
—-d DUMP_PATH, —--dump-path DUMP_PATH
path to extracted files
-1 LOGS_PATH, —--logs-—-path LOGS_PATH

path to log files

API arguments:
-r API_ROOT, --api-root API_ROOT
path to detection APIs
—-a API_LOGS, —--api-logs API_LOGS
path to API runtime logs

(continues on next page)

BroAPT, Release 2020.03.14

(continued from previous page)

runtime arguments:
—-i INTERVAL, --interval INTERVAL
sleep interval
-m MAX_RETRY, —--max—-retry MAX_RETRY
command retry

2.1.2 Environment Variables
As suggests in the ——env option, you may provice a dotenv (. env) file for the BroAPT-Daemon server to configure
itself.
Acceptable environment variables are as following:
BROAPT_ KILL_SIGNAL
Type int
Default 15 (SIGTERM)
CLI Option -s/--signal
Daemon kill signal.
BROAPT_SERVER_HOST
Type str (hostname)
Default 0.0.0.0
CLI Option -t / ——host
The hostname to listen on.
BROAPT_SERVER_PORT
Type int (port number)
Default 5000
CLI Option -p/—--port
The port of the webserver.
BROAPT_DOCKER_COMPOSE
Type str (path)
Default docker—compose.yml
CLI Option -f /--docker—compose
Path to BroAPT’s compose file.
BROAPT DUMP_PATH
Type str (path)
Default None
CLI Option —d/-—dump-path
Path to extracted files.

BROAPT LOGS_PATH

Type str (path)

6 Chapter 2. Configurations

BroAPT, Release 2020.03.14

Default None

CLI Option -1/ --1logs-path

Path to log files.
BROAPT_API_ROOT
Type str (path)
Default None
CLI Option -r/--api-root
Path to detection APIs.
BROAPT_ API_LOGS
Type str (path)
Default None
CLI Option -a/--api-logs
Path to API runtime logs.
BROAPT_INTERVAL
Type float
Default 10
CLI Option -i/--interval
Sleep interval.
BROAPT_ MAX RETRY
Type int
Default 3

CLI Option —-m/ -——-max-retry

Command retry.

Note: Environment variables of bool type will be translated through the following mapping table (case-insensitive):

True | False
1 0

yes no
true | false
on off

2.1. BroAPT-Daemon Server

BroAPT, Release 2020.03.14

2.2 BroAPT-Core Framework

The BroAPT-Core framework only supports configuration through environment variables.

BROAPT_CPU
Type int
Default None

Availability bundled implementation

Number of BroAPT concurrent processes for PCAP analysis. If not provided, then the number of system CPUs

will be used.
BROAPT_ CORE_CPU
Type int
Default None
Availability cluster implementation
See also:
BROAPT _CPU
BROAPT_INTERVAL
Type float
Default 10
Availability bundled implementation
Wait interval after processing current pool.
BROAPT_CORE_INTERVAL
Type float
Default 10

Availability cluster implementation

Wait interval after processing current pool of PCAP files.

BROAPT_DUMP_PATH
Type str (path)
Default FileExtract: :prefix (Bro script)
Path to extracted files.
BROAPT_PCAP_PATH
Type str (path)
Default /pcap/
Path to source PCAP files.
BROAPT_ LOGS_PATH
Type str (path)
Default /var/log/bro/

Path to system logs.

Chapter 2. Configurations

BroAPT, Release 2020.03.14

BROAPT_ MIME_MODE
Type bool
Default True
If group extracted files by MIME type.
BROAPT_ JSON_MODE
Type bool
Default LogAscii: :use_json (Bro script)
Toggle Bro logs in JSON or ASCII format.
BROAPT_ BARE_MODE
Type bool
Default False
Run Bro in bare mode (don’t load scripts from the base/ directory).
BROAPT_NO_CHKSUM
Type bool
Default True
Ignore checksums of packets in PCAP files when running Bro.
BROAPT HASH_MD5
Type bool
Default False
Calculate MDS5 hash of extracted files.
BROAPT HASH_SHA1l
Type bool
Default False
Calculate SHAT1 hash of extracted files.
BROAPT_ HASH_SHA256
Type bool
Default False
Calculate SHA256 hash of extracted files.
BROAPT_X509_MODE
Type bool
Default False
Include X509 information when running Bro.
BROAPT_ENTROPY_MODE
Type bool
Default False

Include file entropy information when running Bro.

2.2. BroAPT-Core Framework

BroAPT, Release 2020.03.14

BROAPT_LOAD_MIME
Type List [str] (case-insensitive)
Default None
A, or ; separated string of MIME types to be extracted.
BROAPT_ IOAD_PROTOCOL
Type List [str] (case-insensitive)
Default None

A, or ; separated string of application layer protocols to be extracted, can be any of dt1s, ftp, http, irc
and smtp.

BROAPT FILE_BUFFER
Type int (uint64)
Default Files: :reassembly_buffer_size (Bro script)
Reassembly buffer size for file extraction.
BROAPT SIZE_LIMIT
Type int (uint64)
Default FileExtract::default_limit (Bro script)
Size limit of extracted files.
BROAPT HOOK_CPU
Type int
Default 1

Number of BroAPT concurrent processes for Python hooks.

2.3 BroAPT-App Framework

The BroAPT-App framework only supports configuration through environment variables.
BROAPT_ SCAN_CPU

Type int

Default None

Availability bundled implementation

Number of BroAPT concurrent processes for extracted file analysis. If not provided, then the number of system
CPUs will be used.

BROAPT_APP_CPU
Type int
Default None
Availability cluster implementation
See also:

BROAPT _SCAN_CPU

10 Chapter 2. Configurations

BroAPT, Release 2020.03.14

BROAPT_INTERVAL

Type float

Default 10

Availability bundled implementation

Wait interval after processing current pool.

BROAPT_ APP_INTERVAL

Type float

Default 10

Availability cluster implementation

Wait interval after processing current pool of extracted files.

BROAPT_ MAX RETRY
Type int
Default 3
Retry times for failed commands.
BROAPT_API_ROOT
Type str (path)
Default /api/
Path to the API root folder.
BROAPT_API_LOGS
Type str (path)
Default /var/log/bro/api/
Path to API detection logs.
BROAPT NAME_HOST
Type str (hostname)
Default 1ocalhost
Hostname of BroAPT-Daemon server.
BROAPT_ NAME_PORT
Type int (port number)
Default 5000

Port number of BroAPT-Daemon server.

2.3. BroAPT-App Framework

11

BroAPT, Release 2020.03.14

12 Chapter 2. Configurations

CHAPTER
THREE

INTERNAL FRAMEWORKS

3.1 BroAPT-Core Extration Framework

The BroAPT-Core framework processes PCAP files, extracts files transferred through traffic contained in the PCAP
files, and perform analysis to the log files generated by Bro scripts.

Bro

Scripts

Input Source Site Functions

PCAP Check Bro Analysis Post-Processing

(Validate tepdump file) (Extract files & Generate logs) (Cross-Analysis)

. i Connection Further info
File MIME Type "3 information of analysed by
Extract by i3 extracted files Python Hooks
App-Layer Protocol i ,
Timestamp

Source HTTP Connection
Destination SMTP / Phishing

MIME type
& Hash value
- Site Functions from Bro Scripts =B

Extracted Standard BroAPT
Files Bro Logs Logs

BroAPT-Core Extraction Framework

0. When the BroAPT-Core framework first reads in a new PCAP file, it will validate if it’s a valid t cpdump
(tcpdump (1)) format file, through 1ibmagic (1ibmagic (3)).

1. If validated, the BroAPT-Core framework will utilise the Bro IDS to perform analysis upon the PCAP file,
extracting files and generating logs.

13

https://www.tcpdump.org
https://pypi.org/project/python-libmagic

BroAPT, Release 2020.03.14

When extracting, you may toggle through environment variables to configure which MIME types and/or what
application layer protocol files transferred with should be extracted.

Also, site functions from user-defined Bro scripts will be loaded and executed at the same time.

This step will produce extracted files and standard Bro logs, as well as extra artefacts elevated through the site
functions.

. Later, the BroAPT-Core framework will perform post-processing, a.k.a. cross-analysis, upon the logs generated

in previous step.

By default, the BroAPT-Core framework will gather connection information of the extracted files from the Bro
logs (files. log). Some other analysis will also be performed as defined in the Python hooks.

The result of analysis will be elevated as BroAPT logs.

3.1.1 Custom Bro Scripts

In the BroAPT system, you can customise your own Bro script. The BroAPT-Core framework will load those scripts
when running Bro IDS to process PCAP files.

User defined Bro scripts will be mapped into the Docker container at runtime. The directory structure would be as

following:

/broapt/scripts/

load FileExtraction module
__load___.bro

configurations

config.bro

MIME-extension mappings
file-extensions.bro

protocol hooks

hooks/

extract DTLS
extract-dtls.bro

extract FTP_DATA
extract-ftp.bro

extract HTTP
extract-http.bro

extract IRC_DATA
extract-irc.bro

extract SMTP
extract-smtp.bro

core logic

— main.bro

MIME hooks

— plugins/

extract all files

extract—-all-files.bro

extract APK
extract—-application-vnd-android-package—-archive.bro

extract PDF

extract-application-pdf.bro

extract PE
extract—-application-vnd-microsoft-portable-executable.bro
extract by BRO_MIME

extract-white-list.bro

site functions by user

(continues on next page)

14

Chapter 3. Internal Frameworks

BroAPT, Release 2020.03.14

(continued from previous page)

L— sites/

load site functions
__load__.bro

where extract-application-vnd-android-package-archive.bro,
extract—application-pdf.broandextract-application-vnd-microsoft-portable-executable.
bro are Bro scripts generated automatically by the BroAPT-Core framework based on the BROAPT LOAD_ MIME
environment vairable.

Important: The BROAPT LOAD_MIME supports UNIX shell-like pattern matching, c.f. fnmatch module from
Python.

And /broapt/scripts/sites/ are mapped from the host machine, which includes the Bro scripts defined by
user. You may include your scripts into the BroAPT-Core framework by loading (@1oad) them in the /broapt/
scripts/sites/__load__ .brofile.

At the moment, we have six sets of Bro scripts included in the distribution.
Common Constants
In the BroAPT system, it predefines many constants of common protocols and systems, such as FTP commands, HTTP

methods, etc. We used crawlers to fetch relevant data from the TANA registry, generate and/or update Bro constants,
such as HTTP : : header_names for HTTP headers fields.

HTTP Cookies

The script utilised ht tp_header event, and extends the builtin http. 1log record object HTTP : : Info with data
from the COOKIE header.

Unknown HTTP Headers

As defined in RFC 2616 and RFC 7230, and registered in IANA, there’re a list of known HTTP headers. However,
customised headers may be introduced when implementation. Such unknown headers may contain significant infor-
mation about the HTTP traffic. Therefore, the script utilised ht tp_header event and search for unknown headers,
i.e. not included in HTTP : : header_names, then record them in the http. log files.

HTTP posT Data

As RFC 2616 suggests, we can utilise the data sent from POST command to analyse information about outbound
traffic. The script utilised http_entity_data event, and save the POST data to http. log files.

3.1. BroAPT-Core Extration Framework 15

https://docs.python.org/3/library/fnmatch.html
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_HTTP.events.bif.zeek.html#id-http_header
https://docs.zeek.org/en/current/scripts/base/protocols/http/main.zeek.html#type-HTTP::Info
https://tools.ietf.org/html/rfc2616.html
https://tools.ietf.org/html/rfc7230.html
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_HTTP.events.bif.zeek.html#id-http_header
https://tools.ietf.org/html/rfc2616.html
https://docs.zeek.org/en/current/scripts/base/bif/plugins/Zeek_HTTP.events.bif.zeek.html#id-http_entity_data

BroAPT, Release 2020.03.14

Calculate Hash Values

Hash value of files can be used to detect malware. The script utilised £i1e_new event, calculated and saved the hash
values of files transferred in the files. log file.

SMTP Phishing Detect

Since files transferred through SMTP traffic are not easy to gather and detect phishing information. We introduced
two Bro modules to perform such detection on the SMTP traffic.

A. Phishing Module

The Phishing module mainly provides mass scam emails; phishing email detection based on Levenshtein distance
of sender address. It will elevate a phishing_link.loglog file, containing such malicious connections and URLs.

B. Phish Module

Primary scope of these bro policies is to give more insights into smtp-analysis esp to track phishing events.

This is a subset of phish-analysis repo and doesn’t use any backed postgres database. So relieves the user from
postgres dependency while getting basic phishing detection up and running very quickly.

3.1.2 Custom Python Hooks

In the BroAPT system, you can customise your own Python hooks for cross-analysis to the log files. The BroAPT-
Core framework will call such registered hooks on each set of log files generacted from a PCAP file after processing
of Bro.

See also:

Log analysis and generation can be done through the ZI.ogging project, which provides both loading and dumping
interface to the processing of Bro logs in an elegant Pythonic way.

User defined Bro scripts will be mapped into the Docker container at runtime. The directory structure would be as
following:

/broapt/python/

setup PYTHONPATH
— __init__ .py

entry point

— __main__ .py

config parser

—— cfgparser.py

Bro script composer
—— compose.py

global constants
—— const.py

Bro log parser

—— logparser.py

BroAPT-Core logic
— process.py

multiprocessing support
F—— remote.py

(continues on next page)

16 Chapter 3. Internal Frameworks

https://docs.zeek.org/en/current/scripts/base/bif/event.bif.zeek.html#id-file_new
https://github.com/hosom/bro-phishing
https://zlogging.jarryshaw.me

BroAPT, Release 2020.03.14

(continued from previous page)

BroAPT-App logic
— scan.py

Python hooks
— sites

register hooks
__init___.py

utility functions
— utils.py

where /broapt/python/sites/ is mapped from the host machine, which includes user-defined site customisa-
tion Python hooks.

You can register your own hooks in the /broapt /python/sites/__init__.py, by importing (import) them
and add them to the HOOK and/or EXIT registry lists.

In the HOOK registry, each registered hook function will be called after a PCAP file is processed by the Bro IDS, and
perform analysis on the logs generated from the PCAP file.

Note: The hook function will be called with ONE argument, 1og_name, a string (st r) representing the folder
name to the target logs.

In the EXIT registry, each registered hook function will be called before the main process of the BroAPT-Core frame-
work exits.

Note: The hook function will be called with NO argument.

At the moment, we have bundled two sets of Python hooks in the system.

Extracted File Information

Through conn.log and files.log, the BroAPT system generates a new log file for information of extracted
files, which includes the timestamp, source and destination IP addresses of the transport layer connection (TCP/UDP)
transferring the file, MIME type of the file, as well as hash values, see below:

Field Name Bro Type | Description

timestamp float Connection timestamp

log_uuid string | UUID of source logs

log_path string | Absolute path to source logs (in Docker container)
log_name string | Relative path to source logs

dump_path string | Absolute path to extracted file (in Docker container)
local_name string | Relative path to extracted file

source_name string | Original filename (if present)

hosts vector | Transferrer and receiver

conns vector | Source and destination IP addresses and ports
bro_mime_type string | MIME type probed by Bro IDS
real_mime_type | string | MIME type detected by 1ibmagic

hash table Hash values (MDS5, SHA1 and SHA256)

The equivalent Z.ogging data model can be declared as following:

3.1. BroAPT-Core Extration Framework 17

https://zlogging.jarryshaw.me/en/latest/zlogging.model.html

BroAPT, Release 2020.03.14

class ExtractedFiles (Model) :
timestamp = FloatType ()
log_uuid = StringType ()
log_path = StringType ()
dump_path = StringType ()
local_name = StringType ()
source_name = StringType ()
hosts = VectorType (element_type=RecordType (
tx=AddrType (),
rx=AddrType (),
))
conns = VectorType (element_type=RecordType (
src_h=AddrType (),
src_p=PortType(),
dst_h=AddrType ()
dst_p=PortType ()

’

4

))

bro_mime_type = StringType ()

real_mime_type = StringType ()

hash = RecordType (
md5=StringType (),
shal=StringType (),
sha256=StringType (),

HTTP Connection Information

Through analysis upon http.log, the BroAPT system elevated a new log file with more concentrated information
about HTTP connections. Such log file contains all HTTP connections from every processed PCAP file, and can be

used for further analysis based on big data.

Field Name | Bro Type | Description

srcip addr Client IP address

ts float Request timestamp (microseconds)

url string | Requests URL path

ref string | Referer header of the request (base64 encoded)
ua string | User-Agent header of the request (base64 encoded)
dstip addr Server IP address

cookie string | Cookie header of the request (base64 encoded)
src_port port Client port

json vector | Unregistered HTTP header fields (JSON encoded)
method string | HTTP method

body string | POST body data (base64 encoded)

The equivalent ZI.ogging data model can be declared as following (with type annotations):

class HTTPConnections (Model) :
srcip: bro_addr
ts: bro_float
url: bro_string
ref: bro_string
ua: bro_string
dstip: bro_addr

(continues on next page)

18 Chapter 3. Internal Frameworks

https://zlogging.jarryshaw.me/en/latest/zlogging.model.html

BroAPT, Release 2020.03.14

(continued from previous page)

cookie: bro_string
src_port: bro_port

json: bro_vector[bro_string]
method: bro_string

body: bro_string

3.2 BroAPT-App Detection Framework

The BroAPT-App framework processes extracted files, perform malware detection upon those files with detection API

configured through the configuration file.

Files

(Extracted)

Input Source

R R R I R A e e

Information of
extracted fle

MIME specific
API

Path
MIME type
File UID

Source PCAP

Environment
Working directory
Installation scripts
Detection seripts

fe s ss s s s e st s s
B R I I R

P
D

A P P S P P P I I Sy

File Check Fetch API

(Extract file information) (MIME type specific APIs)

APl Config

API Selected APT Detection

(Execute detection scripts)

R L R T R A R

Environment
Preparation

* Assign environment variables
* Change working directory

* Expand variables in scripts

» Execute installation scripts

Scripts Execution

* Execute detection scripts
* Execute report generation script
based on detection result

D Y

oooo.ocoooooooooooooocoooo.lcoooo.ocoooo.oooooooooooooﬂ

Detection
Reports

BroAPT-App Detection Framework

0. The BroAPT-App framework fetches basic information about the extracted file, including file path, MIME type,

file UID, source PCAP file, etc.

Each file extracted, since it will be named after:

PROTOCOL-FUID-MIMETYPE.EXT

with such pattern, the BroAPT-App framework will generate an Ent ry to represent the information of the target

file, e.g. for a extracted file named:

3.2. BroAPT-App Detection Framework

19

BroAPT, Release 2020.03.14

application/vnd.openxmlformats-officedocument /HTTP-F3Df5B3z9UI3yi5J03.application.

—msword.docx

the BroAPT-App framework will generate the Ent ry object as following:

Entry(
path='application/vnd.openxmlformats-officedocument /HTTP-F3Df5B3z9UI3yi5J03.

—application.msword.docx"',
uuid="F3Df5B3z9UI3yi5J03",
mime=MIME (

media_type='application',
subtype="'msword',
name="'application/msword"'

1. Based on the MIME type, the BroAPT-App framework will obtain MIME specific detection API for the ex-
tracted file.

2. The BroAPT-App framework will then start detecting the extracted file based on the specification described in
the APL

When detection, as the Docker container may not be capable of such action, the BroAPT-App framework may
request the BroAPT-Daemon server to remote detect the extracted file.

RESTful API Server

BroAPT-Daemon APIv1.0 Virtual Machines
Docker Images

*GET

.':,:;Nl 0/1ist Host Machine
/api/vl.0/report/<id>

*POST

/api/vl.0/scan Environment Scripts

data={"key": “value" . .
onmz'i' v ! Preparation Execution
/api/vl.0/delete/<id>

Remote?
Docker Container

Request Data Request for Response of
Preparation Detection Detection

Environment Scripts Report
Preparation Execution Generation

BroAPT Client-Server Detection Framework

The BroAPT-Daemon server is a RESTful API server implemented using Flask microframework. At the moment
it supports following APIs:

20 Chapter 3. Internal Frameworks

https://flask.palletsprojects.com

BroAPT, Release 2020.03.14

URI Routing HTTP Method | Description
/api/v1.0/1list GET Query detection listing
/api/v1.0/report/<id> GET Query detection report
/api/v1.0/scan data={"key": "value"} | POST Request remote detection
/api/v1.0/delete/<id> DELETE Delete detection record

3.2.1 MIME Specific API Configuration

In the BroAPT-App framework, we used an API configuration file to provide the BroAPT system with MIME specific
detection mechanism. The configuration file is written in YAML, inspired by Docker Compose and Travis CI.

The directory structure of API configuration file and its related files are as below:

/api/

API configuration file
— api.yml

MIME: application/=*
— application/

MIME: audio/=*
— audio/

default API
— example/

MIME: font/=
—— font/

MIME: image/ =«
— image/

MIME: message/«
— message/

MIME: model/x
—— model/

MIME: multipart/=
—— multipart/

[—

MIME: text/=
— text/
MIME: video/=*

L— video/

The /api/ folder will be mapped into the Docker container at runtime and the /api/api.yml is the exact API
configuration file. The API for example MIME type is the default fallback detection method for those with NO
existing detection API configured.

In the configuration file, you can specify global environment variables under the environment key:

environment:
API root path (from environment vairable)

(continues on next page)

3.2. BroAPT-App Detection Framework 21

BroAPT, Release 2020.03.14

(continued from previous page)

API_ROOT: ${BROAPT_API_ROOT}
Python 3.6

PYTHON36: /usr/bin/python3.6
Python 2.7

PYTHON27: /usr/bin/python

Shell/Bash

SHELL: /bin/bash

And for a certain MIME, e.g. PDF files (MIME is application/pdf), the configuration should be as following:

application:
pdf:
remote: false
default working directory is ' /api/application/pdf/ "
now changed to "' /api/application/pdf/pdf_analysis’’
workdir: pdf_analysis

environ:
ENV_FO0O0: 1
ENV_BAR: cliche
install:

- apt-get update
- apt-get install -y python python-pip
- ${PYTHON27} -m pip install -r requirements.txt
- rm -rf /var/lib/apt/lists/x
- apt-get remove -y —--auto-remove python-pip
- apt-get clean
scripts:
- S${PYTHON27} detect.py [...]

report: ${PYTHON27} report.py

Note: Shell-like globing is now supported for MIME types, you may specify an API using application/vnd.
ms—x*, which will be used for both application/vnd.ms-excel and application/ms-powerpoint.

In the configuration file, the report key is mandatory.

If set remote key as t rue, the BroAPT-App framework will request the BroAPT-Daemon server to perform remote
detection.

And if an API configuration is shared by multiple MIME types, you should set shared key as t rue, so that the API
would be process-safe at runtime.

After parsing through the cfgparser.parse () function, the API configuration above will be represented as:

APT (
workdir="pdf analysis',
environ={

"API_ROOT': 'S ',
'"PYTHON36': '/usr/bin/python3.6"',
'"PYTHON27': '/usr/bin/python',
'SHELL': '/bin/bash',
"ENV_FOO': '1°',
"ENV_BAR': 'cliche'

}I

install=[

'apt-get update',

(continues on next page)

22 Chapter 3. Internal Frameworks

BroAPT, Release 2020.03.14

(continued from previous page)

'apt-get install -y python python-pip',

'S -m pip install -r requirements.txt',
'rm -rf /var/lib/apt/lists/="',
'apt-get remove -y —--auto-remove python-pip',

'apt—-get clean'
]I
scripts=[
'S detect.py [...]"',

]I

report="5 report.py"',

remote=False,

shared="'application/pdf"',
inited=<Synchronized wrapper for c_ubyte(0)>,
locked=<Lock (owner=unknown) >

* API.inited is to mark if the installation process had been run successfully.

e API.shared is to mark if the configuration is shared by multiple MIME types.

e APT.locked is to mark if the process is locked to prevent resource competition.

At runtime, if the BroAPT-App framework is to detect a file at /dump/application/pdf/test.pdf, the main
procedure is as follows:

0.

Set environment variables:

API_ROOT="/api/"
PYTHON36="/usr/bin/python3.6"
PYTHON27="/usr/bin/python"
SHELL="/bin/bash"
ENV_FO00=1

NV_BAR="cliche"
PATH="/dump/application/pdf/test.pdf"
MIME="application/pdf"

. Change the current working directory to /api/application/pdf/pdf_analysis.

. Ifthe API.inited is now False, which means the installation process is NOT yet performed, then acquire

API.locked and execute the commands:

apt—-get update

apt—-get install -y python python-pip
python -m pip install -r requirements.txt
rm -rf /var/lib/apt/lists/=*

apt—-get remove -y —-—auto-remove python-pip
apt—-get clean

afterwards, toggle APT . inited to True and release API . locked.

. Execute detection commands:

/usr/bin/python detect.py [...]

. Once finished, execute report generation script /usr/bin/python report.py.

3.2.

BroAPT-App Detection Framework 23

BroAPT, Release 2020.03.14

3.2.2 Integrated Detection Services

At the moment, the BroAPT system had integrated six detection solusions.

Default Detection powered by VirusTotal
VirusTotal aggregates many antivirus products and online scan engines to check for viruses that the user’s own antivirus
may have missed, or to verify against any false positives.

As mentioned above, the example MIME type is the default fallback detection mechanism in case of missing con-
figuration. The configuration is as below:

example:
environ:
sleep interval
VT_INTERVAL: 30
max retry for report
VT_RETRY: 10
percentage of positive threshold
VT_PERCENT: 50
VT API key
VT_API:
path to VT file scan reports
VT_LOG: /var/log/bro/tmp/
report: ${PYTHON36} virustotal.py

Android APK Detection powered by AndroPyTool

AndroPyTool is a tool for extracting static and dynamic features from Android APKs. It combines different well-
known Android apps analysis tools such as DroidBox, FlowDroid, Strace, AndroGuard or VirusTotal analysis. Pro-
vided a source directory containing APK files, AndroPyTool applies all these tools to perform pre-static, static and
dynamic analysis and generates files of features in JSON and CSV formats and also allows to save all the data in a
MongoDB database.

AndroPyTool is configured for detection of APK files, whose MIME type is application/vnd.android.
package-archive in IANA registry. The configuration is as below:

application:
vnd.android.package-archive:
remote: true
workdir: AndroPyTool
environ:
APK _LOG: /home/traffic/log/bro/tmp/
install:
— docker pull alexmyg/andropytool
report: ${SHELL} detect.sh

Since the environment configuration of AndroPyTool is much too complex, we directly used its official Docker im-
age for detection. Therefore, the AndroPyTool is called through remote detection mechanism, i.e. BroApt-Daemon
server performs detection using AndroPyTool Docker image on APK files then send the report back to BroAPT-App
framework for records.

24 Chapter 3. Internal Frameworks

https://www.virustotal.com
https://github.com/alexMyG/AndroPyTool

BroAPT, Release 2020.03.14

Office Document Detection powered by MaliciousMacroBot

MaliciousMacroBot is to provide a powerful malicious file triage tool for cyber responders; help fill existing detection
gaps for malicious office documents, which are still a very prevalent attack vector today; deliver a new avenue for
threat intelligence, a way to group similar malicious office documents together to identify phishing campaigns and
track use of specific malicious document templates.

MaliciousMacroBot is configured for detecting Office files, which is a document type based on XML,
such as Microsoft Office and OpenOffice. The MIME types of such documents include application/
msword, application/ms-excel, application/vnd.ms-powerpoint and application/vnd.
openxmlformats-officedocument . *, etc. The configuration is as below:

application:
vnd.openxmlformats—officedocument.x: &officedocument
workdir: S${API_ROOT}/application/vnd.openxmlformats—-officedocument/
environ:
MMB_LOG: /var/log/bro/tmp/
install:
- yum install -y git
- git clone https://github.com/egaus/MaliciousMacroBot.git
- ${PYTHON36} -m pip install ./MaliciousMacroBot/
- yum clean -y all
report: ${PYTHON36} MaliciousMacroBot-detect.py
shared: officedocument
msword: xoffi]
vnd.ms—-excel: *offic
vnd.ms—-powerpoint:

Note: As you may have noticed here, the configured MIME types detected by MaliciousMacroBot has a globing
syntax, such shall be matched using shell-like globing mechanism.

As the MaliciousMacroBot detection method is shared by multiple MIME types, we set the shared key in the API
to an identifier for the detection method, so that at runtime, such detection method will be process-safe.

Linux ELF Detection powered by ELF Parser
ELF Parser is designed for static ELF analysis. It can quickly determine the capabilities of an ELF binary through
static analysis, then discover if the binary is known malware or a possible threat without ever executing the file.

ELF Parser is configured for the ELF file (MIME type: application/x—-executable only. The configuration
is as below:

application:
x—executable:

ELF Parser

remote: true

environ:
ELF_LOG: /home/traffic/log/bro/tmp/
ELF_SCORE: 100

workdir: ELF-Parser

install:
- docker build --tag elfparser:1.4.0 —-rm

report: ${SHELL} detect.sh

3.2. BroAPT-App Detection Framework 25

https://github.com/egaus/MaliciousMacroBot
http://elfparser.com

BroAPT, Release 2020.03.14

Common Linux Malware Detection powered by LMD

Linux Malware Detect (LMD) is a malware scanner for Linux, that is designed around the threats faced in shared
hosted environments. It uses threat data from network edge intrusion detection systems to extract malware that is
actively being used in attacks and generates signatures for detection. In addition, threat data is also derived from user
submissions with the LMD checkout feature and from malware community resources. The signatures that LMD uses
are MD5 file hashes and HEX pattern matches, they are also easily exported to any number of detection tools such as
ClamAV.

LMD is configured for various common file types. The configuration is as below:

application:
octet-stream: &lmd
LMD
workdir: ${API_ROOT}/application/octet—-stream/LMD
environ:
LMD_LOG: /var/log/bro/tmp/
install:
— yum install -y git which
- test -d ./linux-malware-detect/ ||
git clone https://github.com/rfxn/linux-malware-detect.git
- ${SHELL} install.sh
report: ${SHELL} detect.sh
shared: linux-maldet
text:
html: +Imd
x—-Cc: ».lmd
x—-perl: xlmd
x-php: *lmd

Malicious JavaScript Detection powered by JaSt

JaSt is a low-overhead solution that combines the extraction of features from the abstract syntax tree with a random
forest classifier to detect malicious JavaScript instances. It is based on a frequency analysis of specific patterns, which
are either predictive of benign or of malicious samples. Even though the analysis is entirely static, it yields a high
detection accuracy of almost 99.5% and has a low false-negative rate of 0.54%.

JaSt as is dedicated for javaScript files. The configuration is as below:

application:
javascript: &javascript
workdir: ${API_ROOT}/application/javascript/JaSt
environ:
JS_LOG: /var/log/bro/tmp/
install:
- yum install -y epel-release
- yum install -y git nodejs
- test -d ./Jast/ ||
git clone https://github.com/Aurore54F/JaSt.git
- ${PYTHON3} -m pip install
matplotlib
plotly
numpy
scipy
scikit-learn
pandas

(continues on next page)

26 Chapter 3. Internal Frameworks

https://www.rfxn.com/projects/linux-malware-detect
https://github.com/Aurore54F/JaSt

BroAPT, Release 2020.03.14

(continued from previous page)

- ${PYTHON3} ./JaSt/clustering/learner.py
-—d ./sample/
--1 ./lables/
--md ./models/
--mn broapt-jast
scripts:
- ${PYTHON3} ./JaSt/clustering/classifier.py
——f ${BROAPT_PATH}
--m ./models/broapt-jast
report: ${PYTHON3} detect.py
shared: javascript
text:
javascript: xjavascript

The BroAPT system is generally designed in two main parts, as we described in the introduction, the core functions
and the daemon server with its command line interface (CLI).

Host Machine

Configure

Entry Point BroAPT-Daemon
Control

(RESTFul API Server)

ooooooooo

BroAPT-Core BroAPT-App

(Extraction Framework) (Detection Framework)

Docker Container

Generate

y

Python Hooks Bro Scripts API

(Log Analysis) (Site Functions) Config

Final Report

Extensions & Configurations BroAPT Framework

On the host machine, the BroAPT-Daemon server runs as a manager of the BtoAPT system, which watches the
running status of underlying BroAPT core functions, i.e. BroAPT-Core and BroAPT-App frameworks, as well as
perform remote detection upon API requests from detection framework.

In the docker containers, the BroAPT-Core and BroAPT-App frameworks perform the core functions of BroAPT
system. They analyse source PCAP files and extract files transferred through the traffic with Bro IDS, then detect the
extracted files based on MIME type specifically configured APT detection methods.

3.2. BroAPT-App Detection Framework 27

https://www.zeek.org

BroAPT, Release 2020.03.14

The general process of processing is as following:

Process A

Remote Detection

BroAPT-Daemon (per request)

Request to server Response from server

BroAPT-App Mulwc:::gsectuon

] L]
... ST T TN,
Queve for extracted ﬁles: !
... T LT TP T
"
"
BroAPT-Core Log Analysis '
(Log Analysis) (per hook) .
'
-- : e e e e
Queve for .
.. Basssssasssssssansasssssnsasdosssssssan,
] L]
L] "
. L] "
BroAPT-Core Bro Processing : '
(Bro Processing) (per PCAP) ' '
' '
1 1] L] "
Bososssssssssssssssss Mo s o s ot ssnns L I B oo ososscssssssssssssssssss LI
[] L] [] [] L]
L L L L Il >
Read PCAP Files Logs Detection Detection Time
Extracted Generated Requested Response
(Optional) (Optional)

BroAPT Muiltiprocessing Framework

0. When the BroAPT-Core framework first reads a new PCAP file, it will utilise Bro IDS to process it, extract files
transferred and perform other actions as configured through the Bro site functions.

1. As files had been extracted, the BroAPT-App framework will perform malware detection on each file. If remote
detection configured, it will send an API request to the BroAPT-Daemon server, and wait for its detection report.

2. At the same time, once the Bro processing had finished, the BroAPT-Core framework will start processing the
generated logs, and perform extra analysis over the Bro log files as specified by the Python hooks.

3. When the BroAPT-Daemon receives an API request, it will perform malware detection as described in the
request, and send the detection report back to the BroAPT-App framework.

3.3 Implementation Details

In first draft design, the BroAPT system was implemented in a cluster manner, comparing to current bundled distri-
bution, i.e. the BroAPT-Core framework and BroAPT-App framework are two separate Docker containers. However,
two implementation manners are both maintained at the moment.

Note: In the documentation, we normally refer to bundled implementation when talking about the BroAPT system
internal implementation details.

28 Chapter 3. Internal Frameworks

BroAPT, Release 2020.03.14

Through internal module name may vary between two implementations, the main implementation source codes is,
nevertheless, identical in both implementations.

3.3.1 Cluster Implementation

Note: For source codes, please go to /source/ folder.

In the cluster implementation, the BroAPT-Core framework is running in a CentOS 7 container, as the then-latest
version of Bro IDS (version 2.6.1) was only available through RPM binary; whilst the BroAPT-App framework is
running is in an Ubuntu 16.04 container, with better compatibility for detection tools.

The communication between two frameworks is archived through file system temporary listing files.

3.3.2 Bundled Implementation

Note: For source codes, please goto /cluster/ folder.

In the bundled implementation, both the BroAPT-Core framework and the BroAPT-App framework are running in a
CentOS 7 container.

The communication between two frameworks is archived through multiprocessing.Queue.

3.3. Implementation Details 29

https://github.com/JarryShaw/BroAPT/tree/master/source/
https://github.com/JarryShaw/BroAPT/tree/master/cluster/
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue

BroAPT, Release 2020.03.14

30

Chapter 3. Internal Frameworks

CHAPTER
FOUR

API REFERENCE

As discussed previously, the BroAPT system has two different implementation architectures. They are similar in
overall concepts and processing, but may various in underlying internal source codes. We’ll try to break down into
details of each implementation for you to develop new extensions, hooks, scripts for the BroAPT system in humans
way.

4.1 BroAPT-Core Framework

The BroAPT-Core framework is the extraction framework for the BroAPT system. For more information about the
framework, please refer to previous documentation at BroAPT-Core Extration Framework.

4.1.1 Bro Scripts
Module Entry

File location
* Bundled implementation: source/client/scripts/__load__ .bro
* Cluster implementation: cluster/core/source/scripts/__load__.bro

This is the entry point of the Bro scripts.

Configurations

File location
* Bundled implementation: source/client/scripts/config.bro
¢ Cluster implementation: cluster/core/source/scripts/config.bro

This file contains custom configurations for the Bro IDS at runtime. It will be automatically regenerated at runtime
through the Bro script composer, based on the following environment variables:

* BROAPT LOGS_PATH
e BROAPT PCAP_PATH
* BROAPT _MIME_MODE
* BROAPT HASH MD5

* BROAPT HASH SHAI

* BROAPT HASH SHA256

31

BroAPT, Release 2020.03.14

e BROAPT X509 MODE

e BROAPT ENTROPY_ MODE
e BROAPT DUMP_PATH

* BROAPT FILE_BUFFER

e BROAPT SIZE LIMIT

* BROAPT_ JSON_MODE

e BROAPT LOAD MIME

* BROAPT LOAD_PROTOCOL

MIME-Extension Mappings

File location
* Bundled implementation: source/client/scripts/file-extensions.bro

e Cluster implementation: cluster/core/source/scripts/file-extensions.
bro

This file contains a Bro table mapping MIME types to possible file extensions. The MIME types are fetched from
TANA registries and the file extensions are provided semi-automatically through mimetypes database.

This Bro script can be generated from the the mime2ext . py script as we described in the Miscellaneous & Auxiliary
section.

FileExtraction Module

File location
* Bundled implementation: source/client/scripts/main.bro
* Cluster implementation: cluster/core/source/scripts/main.bro

This files is the main implementation of the FileExtract ion module. The main logic can be simplified as follow-
ing Bro script:

module FileExtraction;

event file_sniff(f: fa_file, meta: fa_metadata) {

if ('hook FileExtraction::ignore(f, meta))
return;

if ('hook FileExtraction::extract (f, meta)) {
scripts to generate an output file name
local name: string = ...;
extract the file to the ~ "name "

Files::add_analyzer (f, Files::ANALYZER_EXTRACT, [Sextract_filename=name]) ;

where FileExtraction: :ignore and FileExtraction: :extract are the two Bro hook functions, i.e.
predicates, you may customise to affect the extraction behaviour.

32 Chapter 4. API Reference

https://www.iana.org/assignments/media-types/media-types.xhtml
https://docs.python.org/3/library/mimetypes.html
https://docs.python.org/3/library/mimetypes.html#module-mimetypes

BroAPT, Release 2020.03.14

Extract by Protocol

File location
* Bundled implementation: source/client/scripts/hooks/
¢ Cluster implementation: cluster/core/source/scripts/hooks/

This fold contains Bro hook functions to toggle if extract files transferred through a certain application layer protocol.
Such scripts will be loaded based on BROAPT LOAD _PROTOCOL environment variable.

Supported protocols are:
* DTLS
* FTP
 HTTP
* IRC
* SMTP

To extract all files transferred through HTTP, i.e. extract-http.bro in the folder, the Bro hook function should
be as below:

@load ../ __load_ _.bro
@load base/protocols/http/entities.bro

module FileExtraction;
hook FileExtraction::extract(f: fa_file, meta: fa_metadata) &priority=15 {

if (fSsource == "HTTP")
break;

Note: We load base/protocols/http/entities.bro to support the script even running in bare mode.

Extract by MIME Type

File location
* Bundled implementation: source/client/scripts/plugins/
¢ Cluster implementation: cluster/core/source/scripts/plugins/

This fold contains Bro hook functions to toggle if extract files of a certain MIME type. Such files will be generated
based on BROAPT ILOAD MIME environment variable.

To extract all files, i.e. extract—all—-files.bro in the folder, the Bro hook function should be as below:

@load ../ __load__ .bro
module FileExtraction;

hook FileExtraction::extract (f: fa_file, meta: fa_metadata) &priority=10 {
break;

4.1. BroAPT-Core Framework 33

BroAPT, Release 2020.03.14

Site Customisations

File location
* Bundled implementation: source/include/scripts/
¢ Cluster implementation: cluster/core/include/scripts/

This folder will be mapped into the Docker container as /broapt/scripts/sites/. You may load your cus-
tomised scriptinthe ___load__ .bro file.

Note: Should the sites folder doesn’t exist, it will not be loaded into the main scripts to avoid raising errors at
runtime.

Currently, we have integrated six sets of customised Bro scripts, please see BroAPT-Core Extration Framework for
more information.

4.1.2 Python Modules

Module Entry

File location
* Bundled implementation: source/client/python/__init__ .py
¢ Cluster implementation: cluster/core/source/python/__init__ .py

This file merely modifies the sys . path so that we can import the Python modules as if from the top level.

System Entrypoint

File location
* Bundled implementation: source/client/python/__main__.py
* Cluster implementation: cluster/core/source/python/__main__.py

This file wraps the whole system and make the python folder callable as a module where the __main__ .py will
be considered as the entrypoint.

__main__ .PCAP_MGC = (b'\xal\xb2\x3c\x4d', b'\xal\xb2\xc3\xd4', b'\x4d\x3c\xb2\xal', b'\xd4
A tuple of magic numbers for PCAP files:

al b2 3c 4d # PCAP files in big endian with nanosecond timestamp

al b2 ¢c3 d4 # PCAP files in big endian

4d 3c b2 al # PCAP files in little endian with nanosecond timestamp
d4 c3 b2 al # PCAP files in little endian

0a 0d 0d Oa # PCAPng files

__main__ .is_pcap (file: str)
Check if £ile is a valid PCAP file with help of 1ibmagic.

Parameters file (st r)— Path of the file to be checked.
Returns If is a valid PCAP file.

Return type bool

34 Chapter 4. API Reference

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/stdtypes.html#str
https://pypi.org/project/python-libmagic
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

BroAPT, Release 2020.03.14

__main___.listdir (path: str)
Fetch all files under path.

Parameters path (st r)— Path to be fetched.
Return type List[str]

__main__ .parse_args (argv: List[str])
Parse command line arguments (path to PCAP files) and fetch valid PCAP files.

Note: If a directory is provided, it will be recursively listed with 1istdizr ().

Parameters argv (List [str])— Command line arguments.
Returns List of valid PCAP files.
Return type List[str]

__main__ .check_history()
Check processed PCAP files.

Note: Processed PCAP files will be recorded at const . FILE.

Returns List of processed PCAP files.
Return type List[str]

__main__.main_with_args()
Run the BroAPT system with command line arguments.

Note: The process will exit once all PCAP files fetched from the paths given by the command line arguments
are processed.

Returns Exit code.

Return type int

__main__.main_with_no_args ()
Run the BroAPT system without command line arguments.

Note: The process will run and check for new PCAP files from const . PCAP_PATH indefinitely.

__main__ .main()
Run the BroAPT-App framework under the context of remote. remote _proc ().

Returns Exit code.
Return type int

See also:

* main with_args()

* main with_no_args()

4.1. BroAPT-Core Framework 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

BroAPT, Release 2020.03.14

Bro Script Composer

File location
* Bundled implementation: source/client/python/compose.py

¢ Cluster implementation: cluster/core/source/python/compose.py

Note: This file works as a standalone script for generating Bro scripts. It is NOT meant to be an importable module
of the BroAPT system.

Introduction

As we can config what MIME types to extract through the BROAPT TLOAD_MIME environment variable, the BroAPT-
Core framework will automatically generate the Bro scripts based on this environment variable and many others.

For MIME types with a shell-like pattern, we will use fnmatch.translate () to convert the pattern into a regular
expression.

A generated Bro script for hook function extracting files with MIME type example/test—+ would be as follow-
ing:

@load ../ __load_ _.bro
module FileExtraction;
hook FileExtraction::extract(f: fa_file, meta: fa_metadata) &priority=5 {

if (meta?Smime_type && /example\/test\-.*/ == metaSmime_type)
break;

Besides this, the Bro script composer will also generate/rewrite the Bro configurations to customise several metrics
and to load the scripts as specified in the environment variables.

Note: The full list of supported environment variables is as following:
* BROAPT LOGS_PATH
e BROAPT PCAP_PATH
¢ BROAPT MIME MODE
* BROAPT HASH _MD5
* BROAPT HASH SHAI
* BROAPT HASH SHA256
e BROAPT X509 MODE
* BROAPT ENTROPY_ MODE
e BROAPT DUMP_PATH
e BROAPT FILE BUFFER
* BROAPT _SIZE_LIMIT

* BROAPT JSON_MODE

36 Chapter 4. API Reference

https://docs.python.org/3/library/fnmatch.html#fnmatch.translate
https://docs.python.org/3/library/fnmatch.html#fnmatch.translate

BroAPT, Release 2020.03.14

¢ BROAPT LOAD_MIME

* BROAPT LOAD_PROTOCOL

Functions

compose.file_ salt (uid: str)
Update the config.bro (Configurations) with provided uid as file_salt.

compose .compose ()
Compose Bro scripts with environment variables defined.

Note: This function is the module entry.

compose .escape (mime_type: str)
Escape shell-like mime_type pattern to regular expression.

Caution: The underlying implementation of fnmatch.translate () calls re.escape () to es-
cape special characters. However, in Python 3.6, the function will escape all characters other than
ASCIIs, numbers and underlines (_); whilst in Python 3.7, it will only escape characters defined in re.
_special_chars_map.

Constants
Auxiliaries

compose .ROOT
Type str
Path to the BroAPT-Core framework source codes (absolute path at runtime).

compose .BOOLEAN_STATES = {'l': True, '0O': False, 'yes': True, 'no': False,
Mapping of boolean states, c.f. configparser.

Bro Configs

compose . LOGS_PATH
Type str (path)
Environ BROAPT LOGS_PATH
Path to system logs.
compose .PCAP_PATH
Type str (path)
Environ BROAPT PCAP_PATH
Path to source PCAP files.

compose .MIME_MODE

4.1. BroAPT-Core Framework 37

'true':

Tr

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/fnmatch.html#fnmatch.translate
https://docs.python.org/3/library/fnmatch.html#fnmatch.translate
https://docs.python.org/3/library/re.html#re.escape
https://docs.python.org/3/library/re.html#re.escape
https://docs.python.org/3/library/configparser.html

BroAPT, Release 2020.03.14

Type bool
Environ BROAPT MIME_MODE

If group extracted files by MIME type.
compose . HASH_MODE_MD5
Type bool
Environ BROAPT HASH MD5
Calculate MD5 hash of extracted files.
compose .HASH MODE_SHA1l
Type bool
Environ BROAPT HASH SHAI
Calculate SHA1 hash of extracted files.
compose .HASH_MODE_SHA256
Type bool
Environ BROAPT HASH SHA256
Calculate SHA256 hash of extracted files.
compose .X509_MODE
Type bool

Environ BROAPT X509 MODE

Include X509 information when running Bro.

compose . ENTROPY_ MODE

Type bool

Environ BROAPT ENTROPY_MODE

Include file entropy information when running Bro.

compose .DUMP_PATH
Type str (path)
Environ BROAPT DUMP_PATH
Path to extracted files.
. data:: compose.FILE_BUFFER
type int (uinto64)
environ BROAPT FILE BUFFER
Reassembly buffer size for file extraction.
compose.SIZE_LIMIT
Type int (uint64)
Environ BROAPT SIZE LIMIT
Size limit of extracted files.

compose .JSON_MODE

38

Chapter 4. API Reference

BroAPT, Release 2020.03.14

Type bool
Environ BROAPT JSON_MODE

Toggle Bro logs in JSON or ASCII format.
compose . LOAD_MIME
Type List [str] (case-insensitive)
Environ BROAPT LOAD MIME
A , or ; separated string of MIME types to be extracted.
compose . LOAD_PROTOCOL
Type List [str] (case-insensitive)
Environ BROAPT LOAD PROTOCOL

A , or ; separated string of application layer protocols to be extracted, can be any of dt1s, ftp, http, irc
and smtp.

Subsitute Patterns

compose .FILE_TEMP
Type Tuple[str]
Template for MIME type extraction Bro scripts.
compose .MIME_REGEX
Type re.Pattern
Pattern for mime (MIME_MODE).
compose . LOGS_REGEX
Type re.Pattern
Pattern for 1ogs (LOGS_PATH).
compose .HASH_REGEX_MD5
Type re.Pattern
Pattern for md5 (HASH_MODE_MD5).
compose .HASH_REGEX_SHA1l
Type re.Pattern
Pattern for shal (HASH_MODE_SHATI).
compose .HASH_REGEX_SHA256
Type re.Pattern
Pattern for sha256 (HASH_MODE_SHAZ256).
compose .X509_REGEX
Type re.Pattern
Pattern for x509 (X509 _MODE).

compose . ENTR_REGEX

4.1. BroAPT-Core Framework 39

BroAPT, Release 2020.03.14

Type re.Pattern
Pattern for ent ropy (ENTROPY_MODE).
compose . JSON_REGEX
Type re.Pattern
Pattern for use_ json (JSON_MODE).
compose .SALT REGEX
Type re.Pattern
Pattern for file_salt (file_salt ()).
compose .FILE_REGEX
Type re.Pattern
Pattern for file_buffer (FILE_BUFFER).
compose .PATH_REGEX
Type re.Pattern
Pattern for path_prefix (DUMP_PATH).
compose.SIZE_REGEX
Type re.Pattern
Pattern for size_limit (SIZE_ LIMIT).
compose . LOAD_REGEX
Type re.Pattern

Pattern for @1oad loading scripts.

Common Constants

File location
* Bundled implementation: source/client/python/const.py
e Cluster implementation: cluster/core/source/python/const.py
const .ROOT
Type str

Path to the BroAPT-Core framework source codes (absolute path at runtime).

const .BOOLEAN_STATES = {'l': True, '0O': False, 'yes': True, 'no': False, 'true':

Mapping of boolean states, c.f. configparser.
const .CPU_CNT
Type int
Environ BROAPT CPU

Number of BroAPT concurrent processes for PCAP analysis. If not provided, then the number of system CPUs
will be used.

const .INTERVAL

Type float

40 Chapter 4. API Reference

True,

https://docs.python.org/3/library/configparser.html

BroAPT, Release 2020.03.14

Environ
* Bundled implementation: BROAPT INTERVAL
* Cluster implementation: BROAPT CORE_INTERVAL
Wait interval after processing current pool of PCAP files.
const .DUMP_PATH
Type str (path)
Environ BROAPT DUMP_PATH
Path to extracted files.
const .PCAP_PATH
Type str (path)
Environ BROAPT PCAP_PATH
Path to source PCAP files.
const .LOGS_PATH
Type str (path)
Environ BROAPT LOGS_PATH
Path to system logs.
const .MIME_MODE
Type bool
Environ BROAPT MIME MODE
If group extracted files by MIME type.
const .BARE_MODE
Type bool
Environ BROAPT BARE_MODE
Run Bro in bare mode (don’t load scripts from the base/ directory).
const .NO_CHKSUM
Type bool
Environ BROAPT NO_ CHKSUM
Ignore checksums of packets in PCAP files when running Bro.
const .HOOK_CPU
Type int
Environ BROAPT HOOK_CPU
Number of BroAPT concurrent processes for Python hooks.
const.FILE

Type str

os.path.join (LOGS_PATH, 'file.log')

Path to file system database of processed PCAP files.

4.1. BroAPT-Core Framework

41

BroAPT, Release 2020.03.14

const .TIME

Type str

os.path.join (LOGS_PATH, 'time.log')

Path to log file of processing time records.

const .STDOUT
Type str

os.path.join (LOGS_PATH, 'stdout.log')

Path to stdout replica.
const .STDERR

Type str

os.path.join (LOGS_PATH, 'stderr.log')

Path to stderr replica.
const .QUEUE_LOGS
Type multiprocessing.Queue
Availability bundled implementation
Teleprocess communication queue for log processing.
const .QUEUE
Type multiprocessing.Queue
Availability cluster implementation
See also:

const.QUEUE_LOGS

Bro Log Parser

File location
* Bundled implementation: source/client/python/logparser.py

* Cluster implementation: cluster/core/source/python/logparser.py

Important: This module has been deprecated for production reasons. Please use the ZI.ogging module for parsing
Bro logs.

42 Chapter 4. API Reference

https://zlogging.jarryshaw.me

BroAPT, Release 2020.03.14

Dataclasses

class logparser.TEXTInfo
A dataclass for parsed ASCII log file.

format = 'text'
Log file format.

path: str
Path to log file.

open: datetime.datetime
Open time of log file.

close: datetime.datetime
Close time of log file.

context: pandas.DataFrame
Parsed log context.

exit_with_error: bool

If log file exited with error, i.e. close time close doesn’t present in the log file.

class logparser.JSONInfo
A dataclass for parsed JSON log file.

format = 'json'
Log file format.

context: pandas.DataFrame
Parsed log context.

Field Parsers

logparser.set_separator: str
Separator of set & vector values in ASCII logs.

logparser.empty field: str
Separator of empty fields in ASCII logs.

logparser.unset_field: str
Separator of unset fields in ASCII logs.

Note: If the field is unset_field, then the parsers below will return None.

logparser.set_parser (s: str, t: Type[T])
Parse set field.

Parameters

* s (str)—Field string.

* t (type) - Type of set elements.
Return type Set [T]

logparser.vector_parser (s: str, t: Type[T])
Parse vector field.

Parameters

4.1. BroAPT-Core Framework

43

https://www.python.org/dev/peps/pep-0557
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://www.python.org/dev/peps/pep-0557
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

* s (str)—Field string.
* t (type) - Type of vector elements.
Return type List [T]

logparser.str_parser (s: sir)
Parse st ring field.

Parameters s (str)— Field string.

Return type str

Note: To unescape the escaped bytes characters, we use the unicode_escape encoding to decode the
parsed string.

logparser.port_parser (s. sir)
Parse port field.

Parameters s (str)— Field string.
Return type int (uint16)

logparser.int_parser (s: sir)
Parse int field.

Parameters s (str)— Field string.
Return type int (int64)

logparser.count_parser (s: sir)
Parse count field.

Parameters s (str)— Field string.
Return type int (uint64)

logparser.addr_parser (s: sir)
Parse addr field.

Parameters s (str)— Field string.
Return type Union[ipaddress.IPv4Address, ipaddress.IPv6Address]

logparser.subnet_parser (s: sir)
Parse subnet field.

Parameters s (str)— Field string.
Return type Union[ipaddress.IPv4Network, ipaddress.IPv6Network]

logparser.time_parser (s: sir)
Parse t ime field.

Parameters s (str)— Field string.
Return type datetime.datetime

logparser.float_parser (s: sir)
Parse float field.

Parameters s (str)— Field string.

Return type decimal.Decimal (precision set to 6)

44 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

logparser.interval_parser (s: sir)
Parse interval field.

Parameters s (str)— Field string.
Return type datetime.timedelta

logparser.enum_parser (s: sir)
Parse enum field.

Parameters s (str)— Field string.
Return type enum.Enum

logparser.bool_parser (s: sir)
Parse bool field.

Parameters s (str)— Field string.
Return type bool

Raises ValueError — If s is not a valid value, i.e. any of unset_field, 'T' (True)or 'F'
(False).

logparser.type parser = collections.defaultdict (lambda: str_parser, dict(string=str_ parse
Mapping for Bro types and corresponding parser function.

Log Parsers

logparser.parse_text (file: io.TextIOWrapper, line: str, hook: Optional[Dict[str, Callable[[str],

Any]])
Parse ASCII logs.

Parameters
* file - Log file opened in read (' r ') mode.
* line (str)— First line of the log file (used for format detection by parse ()).
* hook — Addition parser mappings to register in t ype_parser.

Return type TEXTInfo

logparser.parse_text (file: io.TextiOWrapper, line: str)
Parse JSON logs.

Parameters

* file - Log file opened in read (' r ') mode.

* line (str) - First line of the log file (used for format detection by parse ()).
Return type JSONInfo

logparser.parse (filename: str, hook: Optional[Dict[str, Callable[[str], Any]])
Parse Bro logs.

Parameters
* filename (str)— Log file to be parsed.

* hook — Addition parser mappings to register in t ype_ parser when processing ASCII
logs for parse_text ().

Return type Union[TEXTInfo, JSONInfo]

4.1. BroAPT-Core Framework 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.TextIOWrapper
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

Note: The function will automatically detect if the given log file is in ASCII or JSON format.

Module Entry

logparser.main ()

python logparser.py [filename ...]

Wrapper function to parse and pretty print log files.

Extraction Process

File location
* Bundled implementation: source/client/python/process.py
¢ Cluster implementation: cluster/core/source/python/process.py

process.process (file: str)
Process PCAP file with Bro IDS and put the root folder to Bro logs into const . QUEUE_LOGS.

Parameters file (st r)— Path to PCAP file.

communicate (log_root: str)
Check if extracted files exist based on ext racted field from the files. log.

In bundled implementation, then put the files into const . QUEUE_DUMP.
Parameters log_root (st r)— Root folder to Bro logs.
Raises ExtractWarning — When supposedly extracted file not found.

process.SALT_LOCK: multiprocessing.Lock
Lock for updating config.bro with compsoe.file_salt ().

process.STDOUT_LOCK: multiprocessing.Lock
Lock for writing to the stdout replica const . STDOUT.

process.STDERR_LOCK: multiprocessing.Lock
Lock for writing to the stderr replica const . STDERR.

exception process.ExtractWarning
Bases Warning

Extraction warning.

46 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/exceptions.html#Warning

BroAPT, Release 2020.03.14

Bro Logs Processing

File location
* Bundled implementation: source/client/python/remote.py

* Cluster implementation: cluster/core/source/python/remote.py

Hook Mainloop

remote.remote_proc ()
A context for running processes at the background.

In bundled implementation, this function also starts both remote_dump () and remote_logs () as new
processes.

In cluster implementation, this function starts remote () as a new process.

Note: Before exit, in bundled implementation, it will send STGUSRI signal to the remote_dump () back-
ground process and SIGUSR2 signal to the remote_logs () background process; then wait for the process
to gracefully exit.

In cluster implementation, it will send STGUSR1 signal to the remote_1logs () background process and
wait for the process to gracefully exit.

remote.remote_logs ()
Availability bundled implementation
Runtime mainloop for Python hooks.

The function will start as an indefinite loop to fetch path to Bro logs from const . QUEUE_LOGS, and execute
registered Python hooks on them.

When JOIN_LOGS is set to True, the function will break from the loop and execute registered Python hooks
for closing (sites.EXIT).

Raises HookWarning — If hook execution failed.
remote.remote ()
Availability cluster implementation

The function will start as an indefinite loop to fetch path to Bro logs from const . QUEUE, and execute regis-
tered Python hooks on them.

When JOIN is set to True, the function will break from the loop and execute registered Python hooks for
closing (sites.EXIT).

Raises HookWarning — If hook execution failed.

hook (log_name: str)
Wrapper function for running registered Python hooks.

Parameters log_name (st r)— Root folder of Bro logs.

wrapper_logs (args: Tuple[Callable[[str], Any], str])
Wrapper function for running registered Python hooks for processing (sites. HOOK).

wrapper_func (func: Callable[], Any])
Wrapper function for running registered Python hooks for closing (sites.EXIT).

4.1. BroAPT-Core Framework 47

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

Warnings

exception remote.HookWarning
Bases Warning

Warns when Python hooks execution failed.

Signal Handling
Bundled Implementation

remote.join_logs (*args, **kwargs)
Availability bundled implementation

Toggle JOIN _LOGS to True.

Note: This function is registered as handler for STGUSR2 .

remote.JOIN_LOGS = multiprocessing.Value('B', False)
Availability bundled implementation

Flag to stop the remote_1ogs () background process.

Cluster Implementation

remote. join (*args, **kwargs)
Availability cluster implementation

Toggle JOIN to True.

Note: This function is registered as handler for STGUSR1 ".

remote.JOIN = multiprocessing.Value('B', False)
Availability cluster implementation

Flag to stop the remote () background process.

Auxiliaries & Utilities

File location
* Bundled implementation: source/client/python/utils.py
e Cluster implementation: cluster/core/source/python/utils.py

@utils.suppress
A decorator that suppresses all exceptions.

utils.file_1lock (file: str)
A context lock for file modification with a file system lock.

48 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager

BroAPT, Release 2020.03.14

Parameters file (st r)— Filename to be locked in the context.

utils.print_file (s: Any, file: str)
Wrapper function to process-safely print s into file.

Parameters
* s (str)— Content to be printed.
e file (str)— Filename of output stream.

utils.redirect (src: str, dst: str, label="unknown')
Redirect the content of src to dst with label as prefix:

<label> line from src

Parameters
e src (str) - Filename of source file.
e dst (str) - Filename of destination file.
* label (str)— Optional prefix to the redirected content.
utils.is_nan (value: Any)
Check if value is None or a NaN.
Parameters value — Value to be checked.

Return type bool

Site Customisations

File location
* Bundled implementation: source/include/python/
 Cluster implementation: cluster/core/include/python/

This folder will be mapped into the Docker container as /broapt/python/sites/. You may register your
customised Python hooks inthe __init__ .py file.

sites.HOOK: List[Callable[[str], Any]]
Registry for processing hooks.

Registered function should take the path to the folder of Bro logs as a single parameter, return values will be
ignored. Such functions will be called on each Bro log folder generated from PCAP files.

sites.EXIT: List[Callable[], Any]]
Registry for closing hooks.

Registered function should take NO parameters, return values will be ignored. Such functions will be called
before the system exits.

Currently, we have integrated two sets of customised Python hooks, please see BroAPT-Core Extration Framework for
more information.

4.1. BroAPT-Core Framework 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/math.html#math.isnan
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

4.1.3 Wrapper Scripts

For the Docker container, we have created some Shell/Bash wrapper scripts to make the life a little bit better.

Bundled Implementation

File location source/client/init.sh

#!/usr/bin/env bash
set —aex

change curdir
cd /broapt

load environs

if [-f .env] ; then
source .env

fi

compose Bro scripts
/usr/bin/python3.6 python/compose.py

run scripts
/usr/bin/python3.6 python 5@

sleep
sleep infinity

Cluster Implementation

File location cluster/core/source/init

.sh

#!/usr/bin/env bash
set —aex

change cwd
cd /source

load environs

if [-f .env] ; then
source .env

fi

compose Bro scripts
/usr/bin/python3.6 python/compose.py

run scripts
/usr/bin/python3.6 python 5@

sleep
sleep infinity

50

Chapter 4. API Reference

BroAPT, Release 2020.03.14

4.2 BroAPT-App Framework

The BroAPT-App framework is the analysis framework for the BroAPT system. For more information about the
framework, please refer to previous documentation at BroAPT-App Detection Framework.

4.2.1 Python Modules

Module Entry

File location
* Bundled implementation: source/client/python/__init__ .py
* Cluster implementation: cluster/app/source/python/__init__ .py

This file merely modifies the sys . path so that we can import the Python modules as if from the top level.

System Entrypoint

File location
* Bundled implementation:
— source/client/python/remote.py
— source/client/python/scan.py
* Cluster implementation: cluster/app/source/python/__main__ .py

In bundled implementation, the Bro Logs Processing module (remote) starts a background process for the BroAPT-
App framework; whilst the Detection Process module (process) contains main processing logic as well as the
original system entrypoint.

In cluster implementation, this file wraps the whole system and make the python folder callable as a module where
the __main__ .py will be considered as the entrypoint.

Constants

_ _main__ .FILE REGEX: re.Pattern

Availability cluster implementation

re.compile(r"""
protocol prefix
(?P<protocol>DTLS |FTP_DATA |HTTP | IRC_DATA | SMTP | \S+)
file UID

(?P<fuid>F\w+)

\.

PCAP source

(?P<pcap>.+?)

\.

media-type
(?P<media_type>

—application|audiol|example|font|image |message|model |[multipart|text|video|\S+)

\.

(continues on next page)

4.2. BroAPT-App Framework 51

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path

BroAPT, Release 2020.03.14

(continued from previous page)

subtype
(?P<subtype>\S+)
\.
file extension
(?P<extension>\S+)

v re.IGNORECASE re.VERBOSE)

’

Regular expression to match and fetch information from extracted files.

See also:

const.FILE REGEX

Dataclasses

class scan.MIME

Availability bundled implementation
A dataclass for parsed MIME type.

media_type: str
Media type.

subtype: str
Subtype.

name: str
MIME type.

class _ main__ .MIME
Availability cluster implementation
See also:
scan.MIME

class scan.Entry

Availability bundled implementation
A dataclass for extracted file entry.

path: str
File path.

uuid: str
UUID parsed from file.

mime: MIME
Parsed MIME type dataclass.

Note: This dataclass supports ordering with power of functools.total_ordering().

class _ main__ .Entry

Availability cluster implementation

Chapter 4. API Reference

52

https://www.python.org/dev/peps/pep-0557
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.python.org/dev/peps/pep-0557
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.python.org/dev/peps/pep-0557
https://docs.python.org/3/library/functools.html#functools.total_ordering
https://docs.python.org/3/library/functools.html#functools.total_ordering

BroAPT, Release 2020.03.14

See also:

scan.Entry

Bundled Implementation
scan Module

scan.scan (local_name: str)
Availability bundled implementation
Parse then start processing of the given file.
See also:
scan.process ()
scan.lookup (path: str)
Availability bundled implementation
Fetch all extracted files to be processed from the given path.
Parameters path (st r)— Path to extracted files.
Returns List of extracted files.

Return type List[str]

remote Module
Framework Mainloop

remote.remote_dump ()
Availability bundled implementation

Runtime mainloop for BroAPT-App framework.

The function will start as an indefinite loop to fetch path to extracted files from const.QUEUE_DUMP, and

perform scan () on them.

When JOIN_DUMP is set to True, the function will break from the loop.

Signal Handling

remote. join_dump (*args, **kwargs)
Availability bundled implementation

Toggle JOIN _DUMP to True.

Note: This function is registered as handler for SIGUSR1 ".

remote.JOIN_DUMP = multiprocessing.Value('B’',

Availability bundled implementation

False)

4.2. BroAPT-App Framework

53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

Flag to stop the remote_dump () background process.

Cluster Implementation

__main___.listdir (path: str)

Availability cluster implementation
Fetch and parse all extracted files in the given path.

Parameters path (st r)— Path to extracted files.
Returns List of parsed ent ry for extracted files.
Return type List[Entry]

__main__ .check_history ()
Availability cluster implementation

Check processed extracted files.

Note: Processed extracted files will be recorded at const . DUMP.

Returns List of processed extracted files.

Return type List[str]

__main___.main()
Availability cluster implementation
Run the BroAPT-Core framework.
Returns Exit code.
Return type int
See also:

main__ .process ()

API Config Parser

File location
* Bundled implementation: source/client/python/cfgparser.py

¢ Cluster implementation: cluster/app/source/python/cfgparser.py

54 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

BroAPT, Release 2020.03.14

Dataclasses

class cfgparser.API
A dataclass for parsed API entry.

workdir: str
API working directory.

environ: Dict[str, Any]
API runtime environment variables.

install: List[Union[str, List[str]]]
List of installation commands.

scripts: List[Union[str, List[str]]]
List of detection commands.

report: str
Report generation command.

remote: bool
If the API required remote execution, i.e. through the BroAPT-Daemon server.

shared: str
Sharing identifier, i.e. which MIME type the API entry is shared with.

inited = multiprocessing.Value('B', False)
Initied flag.

locked: multiprocessing.Lock
Multiprocessing runtime lock.

Functions

cfgparser.parse_cmd (context: Dict[str, Any], mimetype: str, environ: Dict[str, Any])
Parse API of mimetype.

Parameters
* context — API configuration context.
* mimetype (st r)— MIME type of the APL
* environ - Global environment variables.
Raises ReportNotFoundError —If report section not presented in context.

cfgparser.parse (root: str)
Parse API configuration file api.yml.

Parameters root (str)— Root path to the APIs.
Returns The parsed API entries, i.e. APT_DICT.

Return type Dict[str, API]

4.2. BroAPT-App Framework 55

https://www.python.org/dev/peps/pep-0557
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

Constants

cfgparser .MEDIA_TYPE: Tuple[str]

("application',

'audio',

'example', ## preserved for default API
'font',

'image',

'message’',

'model’',

'multipart’',

'text',

'video')

Possible media types.

cfgparser .API_DICT: Dict[str, API]
Database for API entries.

cfgparser .API_LOCK: Dict[str, multiprocessing.Lock]
Database for multiprocessing lock.

cfgparser .API_INIT: Dict[str, multiprocessing.Value]
Database for inited flags.

Exceptions

exception cfgparser.ConfigError
Bases Exception
Invalid config.
exception cfgparser.DefaultNotFoundError
Bases ConfigError
The default fallback API for MIME type example not found.
exception cfgparser.ReportNotFoundError
Bases ConfigError

The report section not found in APL

Common Constants

File location
* Bundled implementation: source/client/python/const.py
* Cluster implementation: cluster/app/source/python/const.py
const .ROOT
Type str

Path to the BroAPT-App framework source codes (absolute path at runtime).

56 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

BroAPT, Release 2020.03.14

const .CPU_CNT
Type int
Environ
* Bundled implementation: BROAPT _SCAN_CPU
* Cluster implementation: BROAPT _APP_CPU

Number of BroAPT concurrent processes for extracted file analysis. If not provided, then the number of system
CPUs will be used.

const . INTERVAL
Type int
Environ
* Bundled implementation: BROAPT _INTERVAL
* Cluster implementation: BROAPT APP_INTERVAL
Wait interval after processing current pool of extracted files.
const .MAX RETRY
Type int
Retry times for failed commands.
const .EXIT_ SUCCESS = 0
Type int
Exit code upon success.
const .EXIT_FAILURE = 1
Type int
Exit code upon failure.
const .LOGS_PATH
Type str
Environ BROAPT LOGS_PATH
Path to system logs.
const .DUMP_PATH
Type str
Environ BROAPT DUMP_PATH
Path to extracted files.
const .API_ROOT
Type str
Environ BROAPT API_ROOT
Path to the API root folder.
const .API_LOGS

Type str

4.2. BroAPT-App Framework 57

BroAPT, Release 2020.03.14

Environ BROAPT API LOGS

Path to API detection logs.

const .API_DICT

Type Dict[str, cfgparser.API]
Database for API entries.
See also:

cfgparser.parse

const .SERVER _NAME HOST

Type str
Environ BROAPT NAME HOST

Hostname of BroAPT-Daemon server.

const .SERVER_NAME PORT

Type str
Environ BROAPT NAME_PORT

Port number of BroAPT-Daemon server.

const .SERVER_NAME

Type str

f'http://{SERVER_NAME_HOST/: {SERVER_NAME_PORT //api/v1.0/scan'

URL for BroAPT-Daemon server’s scanning API.

const .DUMP

Type str

os.path.join (LOGS_PATH, 'dump.log')

Path to file system database of processed extracted files.

const .FAIL

Type str

os.path.join (LOGS_PATH, 'fail.log')

Path to file system database of failed processing extracted files.

const .FILE_REGEX

Type re.Pattern

Availability bundled implementation

re.compile (r
protocol prefix
(?P<protocol>DTLS |FTP_DATA |HTTP | IRC_DATA | SMTP | \S+)
file UID
(?P<fuid>F\w+)

(continues on next page)

58

Chapter 4. API Reference

BroAPT, Release 2020.03.14

(continued from previous page)

\.

PCAP source

(?P<pcap>.+?)

\.

media-type

(?P<media_type>
—application|audio|example|font|image |message|model I[multipart|text|video|\S+)

\.

subtype

(?P<subtype>\S+)

\.

file extension

(?P<extension>\S+)
vt re.IGNORECASE re.VERBOSE)

’

Regular expression to match and fetch information from extracted files.
See also:
__main__ .FILE _REGEX
const .MIME_ REGEX
Type re.Pattern

Availability bundled implementation

re.compile(r'""'
media-type
(?P<media_type>
—application|audio|example|font|image |message |model I[multipart|text|video|\S+)
/
subtype
(?P<subtype>\S+)
v re.VERBOSE | re.IGNORECASE)

4

Regular expression to match and fetch information from MIME type.
const .QUEUE_DUMP
Type multiprocessing.Queue
Availability bundled implementation

Teleprocess communication queue for extracted files processing.

Detection Process

File location
* Bundled implementation: source/client/python/scan.py
* Cluster implementation:
— cluster/app/source/python/scan.py
— cluster/app/source/python/utils/py

4.2. BroAPT-App Framework

BroAPT, Release 2020.03.14

Bundled Implementation

scan.process (entry: Entry)
Availability bundled implementation
Process extracted files with detection APIs.
Parameters entry (Entry) — File to be processed.
scan .make_env (api: API)
Availability bundled implementation
Generate a dictionary of environment variables based on API entry.
Parameters api (API)— APl entry from api .yml.
Return type Dict[str, Any]
scan.make_cwd (api: API, entry: Optional[Entry] = None, example: bool = False)
Availability bundled implementation
Generate the working directory of API entry.
Parameters
* api (API) - APl entry from api.yml.
* entry (Entry) — File to be processed.
* example (bool)—If using the fallback detection APl example.
Returns Path to the working directory.
Return type str
scan.init (api: API, cwd: str, env: Dict[str, Any], mime: str, uuid: str)
Availability bundled implementation
Run the initialisation commands of API entry.
Parameters
* api (API) - APl entry from api.yml.
* cwd (st r)— Working directory.
* env (Dict[str, Any])- Environment variables.
* mime (str)— MIME type.
* uuid (st r)— Unique identifier of current scan.
Returns Exit code (const.EXIT SUCCESS or const .EXIT FAILURE).
Return type int

scan.run (command: Union[str, List[str]], cwd: str = None, env: Optional[Dict[str, Any]] = None, mime:
str = 'example’, file: str = 'unknown')

Availability bundled implementation
Run command with provided settings.
Parameters

e command (Union[str, List[str]])- Command toexecute.

60 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

* cwd (st r)— Working dictionary.
e env (Dict[str, Any])- Environment variables.
* mime (str)—- MIME type.
* file (str)— Stem of output log file.
Returns Exit code (const.EXIT_SUCCESS or const.EXIT_FAILURE).
Return type int
scan.issue (mime: str)
Availability bundled implementation
Called when the execution of API commands failed.
Parameters mime (st r) - MIME type.
Returns Exit code (const .EXIT FAILURE).
Return type int
Raises
* APIError —If mime is example.
* APIWarning —If mime is NOT example.
exception scan.APIWarning
Bases Warning
Availability bundled implementation
Warn if API execution failed.
exception scan.APIError
Bases Exception
Availability bundled implementation

Error if API execution failed.

Cluster Implementation

process.process (entry: Entry)
Availability cluster implementation
See also:
scan.process ()
process.make_env (api: API)
Availability cluster implementation
See also:
scan.make_env ()
process .make_cwd (api: API, entry: Optional[Entry] = None, example: bool = False)

Availability cluster implementation

4.2. BroAPT-App Framework

61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

BroAPT, Release 2020.03.14

See also:
scan.make_cwd ()
process.init (api: API, cwd: str, env: Dict[str, Any], mime: str, uuid: str)
Availability cluster implementation
See also:
scan.init ()

process.run (command: Union[str, List[str]], cwd: str = None, env: Optional[Dict[str, Any]] = None,
mime: str = 'example’, file: str = 'unknown')

Availability cluster implementation
See also:
scan.run ()
process.issue (mime: str)
Availability cluster implementation
See also:
scan.issue ()
exception utils.APIWarning
Bases Warning
Availability cluster implementation
See also:
scan.APIWarning
exception utils.APIError
Bases Exception
Availability cluster implementation
See also:

scan.APIError

Remote Detection

File location
* Bundled implementation: source/client/python/scan.py

* Cluster implementation: cluster/app/source/python/remote.py

62 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

Bundled Implementation

scan.remote (entry: Entry, mime: str, api: API)
Availability bundled implementation
Request the BroAPT-Daemon server to perform remote detection.

Parameters
* entry (Entry) — Extracted file to be processed.
* mime (str)— MIME type.
* api (API) - APl entry from api.yml.

Returns Exit code (const .EXIT _SUCCESS or const.EXIT FAILURE).

Return type int

Cluster Implementation

remote.remote (entry: Entry, mime: str, api: API)
Availability cluster implementation
See also:

scan.remote ()

Auxiliaries & Utilities

File location
* Bundled implementation: source/client/python/utils.py
 Cluster implementation: cluster/app/source/python/utils.py

@utils.suppress
A decorator that suppresses all exceptions.

utils.file_lock (file: str)
A context lock for file modification with a file system lock.

Parameters f£ile (st r)— Filename to be locked in the context.

utils.temp_env (env: Dict[str, Any])
A context for temporarily change the current os . environ.

Parameters env (Dict [str, Any])- Environment variables.

utils.print_file (s: Any, file: str)
Wrapper function to process-safely print s into file.

Parameters
* s (str)— Content to be printed.

e file (str)— Filename of output stream.

4.2. BroAPT-App Framework

63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

4.2.2 API Configurations

File location
* Bundled implementation: source/include/api/
¢ Cluster implementation: cluster/app/include/api/

As discussed in previous documentation, we provided a YAML configuration file api . yml for registering MIME
type specific detection methods.

For example, following is the requirements of an API for analysing PDF files (MIME type: application/pdf):
¢ Root: /api/
 Target: - MIME type: application/pdf - file name: /dump/application/pdf/test.pdf

e API: - working directory: ./pdf_analysis - environment: ENV_FOO=1, ENV_BAR=this is an
environment variable

The configuration section should then be:

application:

. # other APIs

pdf:
remote: false
workdir: pdf_analysis

environ:

ENV_FO00: 1

ENV_BAR: this is an environment variable
install:

- apt-get update

- apt-get install -y python python-pip

- python -m pip install -r requirements.txt
- rm -rf /var/lib/apt/lists/x

- apt-get remove -y —--auto-remove python-pip
- apt-get clean

scripts:
- ${PYTHON27} detect.py [...] # refer to /usr/bin/python
- ... # and some random command
report: ${PYTHON27} report.py # generate final report

Important: report section is MANDATORY.

If remote is true, then the BroAPT-APP framework will run the corresponding API in the host machine through
the BroAPT-Daemon server.

The BroAPT-App framework will work as following:
1. set the following environment variables:
e per target file
— BROAPT_PATH="/dump/application/pdf/test.pdf"
— BROAPT_MIME="application/pdf"
 per API configuration
— ENV_FO00=1

— ENV_BAR="this is an environment variable"

64 Chapter 4. API Reference

BroAPT, Release 2020.03.14

2. change the current working directory to /api/application/pdf/pdf_analysis
3. if run for the first time, run the following commands:

* apt—get update

e apt—-get install -y python python-pip

e python -m pip install -r requirements.txt

e rm -rf /var/lib/apt/lists/«

* apt—-get remove -y ——auto-remove python-pip

e apt—-get clean
4. run the following mid-stage commands:

e /usr/bin/python detect.py [...]

5. generate final report: /usr/bin/python report.py

Note: The registered MIME types support shell-like patterns.

If the API of a specific MIME type is not provided, it will then fallback to the API configuration registered under the
special example MIME type.

Configuration for API arguments of BroAPT-APP

[z 2T S 2T s 2SS TS EE TSI TSI EIEE ISR TR ST ST EEEEEEEE LS
Environment (global setup)

##

Environment variables 'S${...} wused in API arguments will be translated
according to the following values.

##

environment:

API root path

API_ROOT: ${BROAPT API ROOT}
Python 3.6

PYTHON: /usr/bin/python3.6
PYTHON36: /usr/bin/python3.6
PYTHON3: /usr/bin/python3.6
Python 2.7

PYTHON27: /usr/bin/python
PYTHON2: /usr/bin/python

Shell/Bash

SHELL: /bin/bash

s dadssdadssdadsdatadsadsdssdadsadadsddadadiadsdiadadasdatasdadaadadaddaddd
Example:

##

— Root: Japi/®

— Target:

#4# - MIME type: ‘application/pdf"’

- file name: ' /dump/application/pdf/test.pdf"’

— API:

- working directory: './pdf_analysis’

- environment: "ENV_FOO=1", "ENV_BAR=this 1s an environment variable’

(continues on next page)

4.2. BroAPT-App Framework 65

BroAPT, Release 2020.03.14

(continued from previous page)

##

The configuration section should then be:

##

application:

... # other APIs

pdf:

remote: false

workdir: pdf_analysis

environ:

ENV_FO0O: 1

ENV_BAR: this 1s an environment variable

install:

- apt-get update

- apt-get install -y python python-pip

- python -m pip install -r requirements.txt
- rm -rf /var/lib/apt/lists/*

- apt-get remove -y —-—auto-remove python-pip
- apt-get clean

scripts:

- S{PYTHON27} detect.py [...] # refer to /usr/bin/python
- ... # and some random command
report: S{PYTHON27} report.py # generate final report
##

BroAPT will work as following:

##

1. set the following environment variables

per target file

— BROAPT_PATH="/dump/application/pdf/test.pdf"
- BROAPT_MIME="application/pdf"

per API configuration

#i# - ENV_F00=1

— ENV_BAR="this 1s an environment variable"

2. change the current working directory to

‘/api/application/pdf/pdf_analysis’

3. 1f run for the first time, run the following commands:
- ‘apt-get update’

- ‘apt-get install -y python python-pip’

- ‘python -m pip install -r requirements.txt’
- 'rm -rf /var/lib/apt/lists/*"

- ‘apt-get remove -y --auto-remove python-pip’
- ‘apt-get clean’

4. run the following mid-stage commands:

- “Jusr/bin/python detect.py [...]"

- L]

5. generate final report:

‘/usr/bin/python report.py’

##

NOTE: ‘report’ section is MANDATORY.

If ‘remote’ is ‘true’', then BroAPT will run the
corresponding API in the host machine.

##

APIs for “application’ media type
application:
javascript: &javascript
JaSt
workdir: ${API_ROOT}/application/javascript/JaSt

(continues on next page)

66

Chapter 4. API Reference

BroAPT, Release 2020.03.14

(continued from previous page)

environ:
JS_LOG: /var/log/bro/tmp/
install:
- yum install -y epel-release
- yum install -y git nodeis
- test -d ./Jast/ ||
git clone https://github.com/Aurore54F/JasSt.git
- ${PYTHON3} -m pip install
matplotlib
plotly
numpy
scipy
scikit-learn
pandas
- ${PYTHON3} ./JaSt/clustering/learner.py
--d ./sample/
-—-1 ./lables/
--md ./models/
—--mn broapt-jast
scripts:
- ${PYTHON3} ./JaSt/clustering/classifier.py
--f ${BROAPT_PATH}
--m ./models/broapt-jast

report: "false"
octet-stream: &lmd
LMD
workdir: ${API_ROOT}/application/octet-stream/LMD
environ:
LMD _LOG: /var/log/bro/tmp/
install:

- yum install -y git which
- test -d ./linux-malware—-detect/ ||
git clone https://github.com/rfxn/linux-malware-detect.git
- ${SHELL} install.sh
report: ${SHELL} detect.sh
vnd.android.package—archive:
AndroPyTool
remote: true
workdir: AndroPyTool
environ:
ANDROID_HOME: SHOME/android-sdk-linux
PATH: SPATH:SANDROID HOME/tools
PATH: SPATH:SANDROID_HOME/platform-tools
APK_LOG: /var/log/bro/tmp/
APK _LOG: /home/traffic/log/bro/tmp/
install:
— S{SHELL} install.sh
- docker pull alexmyg/andropytool
report: S{PYTHON36} detect.py
report: ${SHELL} detect.sh
vnd.openxmlformats—officedocument: &officedocument
MaliciousMacroBot
workdir: S${API_ROOT}/application/vnd.openxmlformats-officedocument/
environ:
MMB_LOG: /var/log/bro/tmp/
install:
- yum install -y git

(continues on next page)

4.2. BroAPT-App Framework 67

BroAPT, Release 2020.03.14

(continued from previous page)

- test -d ./MaliciousMacroBot/ ||
git clone https://github.com/egaus/MaliciousMacroBot.git
${PYTHON36} -m pip install ./MaliciousMacroBot/
— rm -rf ./MaliciousMacroBot/
— yum erase -y git
- yum clean -y all
report: ${PYTHON36} MaliciousMacroBot-detect.py
shared: officedocument
msword: *officedocument
vnd.ms—x: *officedocument
vnd.openxmlformats-officedocument: xofficedocument
vnd.openxmlformats—officedocument.*: xofficedocument
x—executable:
ELF Parser
remote: true
environ:
ELF_LOG: /var/log/bro/tmp/
ELF_LOG: /home/traffic/log/bro/tmp/
ELF_SCORE: 100
workdir: ELF-Parser
install:
- docker build --tag elfparser:1.4.0 —--rm
yum install -y git cmake make boost-devel gcc gcc—g++
- test -d ./elfparser/ ||
git clone https://github.com/jacob-baines/elfparser.git
S{SHELL} build.sh
- rm -rf ./elfparser/
— yum erase -y git cmake make
— yum clean -y all
report: ${SHELL} detect.sh

So% W W W W
[

APIs for ‘“audio’ media type
audio:

Default API for missing MIME types
example:
environ:
sleep interval
VT _INTERVAL: 30
max retry for report
VT_RETRY: 10
percentage of positive threshold
VT_PERCENT: 50
VI API key
#VT_APT: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXKXXXXXKXXKXXXXXKXXXXXKXXXKXXKX
path to VT file scan reports
VT_LOG: /var/log/bro/tmp/
report: ${PYTHON36} virustotal.py || exit 0 # always EXIT SUCCESS

APIs for “font' media type
font:

APIs for ‘image’ media type
image:

APIs for "“message media type
message:

(continues on next page)

68 Chapter 4. API Reference

BroAPT, Release 2020.03.14

(continued from previous page)

APIs for "model’ media type
model:

APIs for "multipart’ media type
multipart:

APIs for ‘text' media type
text:
html: »1lmd
javascript: xjavascript
x—c: »lmd
x-perl: +lmd
x-php: *1lmd

APIs for ‘video' media type
video:

Configuration for API arguments of BroAPT-APP

FHAARFRAAAFAFARARAAFARAAARAAFAAARA AR R RAAFAEA A A AFA A A AAA AR AR AR A AHAHA
Environment (global setup)

##

Environment variables "S${...} used in API arguments will be translated
according to the following values.

##

environment:

API root path

API_ROOT: ${BROAPT_API_ROOT}
Python 3.6

PYTHON: /usr/bin/python3.6
PYTHON36: /usr/bin/python3.6
PYTHON3: /usr/bin/python3.6
Python 2.7

PYTHON27: /usr/bin/python
PYTHON2: /usr/bin/python

Shell/Bash

SHELL: /bin/bash

FHAARFRAAFRAFFRAAFRAFFAAFFAAFFAAFFAAFFAA AR AR FRAAF RSB AR FRAAF A SRS F A
Example:

##

— Root: /api/’

— Target:

- MIME type: ‘application/pdf"’

- file name: " /dump/application/pdf/test.pdf’
— API:

- working directory: °./pdf_analysis"’

— environment: 'ENV_FOO=1', ‘ENV_BAR=this 1s an environment variable’
##

The configuration section should then be:

##

application:

... # other APIs

pdf:

remote: false

(continues on next page)

4.2. BroAPT-App Framework 69

BroAPT, Release 2020.03.14

(continued from previous page)

#i#
##
##
#i#
##
##
#i#
##
##
#i#
##
##
#i#
##
##
#i#
##
##
#i#
##
##
#i
##
##
#i#
##
##
#i#
##
##
#i#
##
##
#i#
##
##
#i
##
##
#i
##
##
#i#
##

workdir: pdf_analysis

environ:

ENV_FOO: 1

ENV_BAR: this is an environment variable
install:

- apt—-get update

- apt—-get install -y python python-pip

- python -m pip install -r requirements.txt
- rm -rf /var/lib/apt/lists/*

- apt-get remove -y —-—-auto-remove python-pip
- apt—-get clean

scripts:
- S{PYTHON27} detect.py [...] # refer to /usr/bin/python
- ... # and some random command
report: S{PYTHON27} report.py # generate final report

BroAPT will work as following:

1. s

et the following environment variables

per target file

BROAPT PATH="/dump/application/pdf/test.pdf"
BROAPT _MIME="application/pdf"

per API configuration

ENV_FO0O0=1

ENV_BAR="this 1is an environment variable"

2. change the current working directory to

3. 1
4. r

/api/application/pdf/pdf_analysis’
f run for the first time, run the following commands:
‘apt-get update’
‘apt-get install -y python python-pip’
‘python -m pip install -r requirements.txt’
‘rm -rf /var/lib/apt/lists/%*"
‘apt-get remove -y ——-auto-remove python-pip’
‘apt-get clean’
un the following mid-stage commands:
‘/usr/bin/python detect.py [...]"

5. generate final report:

NOTE

/usr/bin/python report.py"

: ‘report' section is MANDATORY.
If ‘remote’ 1is ‘true’, then BroAPT will run the
corresponding API in the host machine.

APIs for “application’ media type
application:

##

javascript: &javascript

JaSt

workdir: S${API_ROOT}/application/javascript/JaSt
environ:

JS_LOG: /var/log/bro/tmp/
install:

apt—-get update

apt-get install -y —--no-install-recommends git nodeijs
test -d ./Jast/ ||

git clone https://github.com/Aurore54F/JaSt.git

(continues on next page)

70

Chapter 4. API Reference

BroAPT, Release 2020.03.14

(continued from previous page)

- ${PYTHON3} -m pip install
matplotlib
plotly
numpy
scipy
scikit-learn
pandas
- ${PYTHON3} ./JaSt/clustering/learner.py
--d ./sample/
--1 ./lables/
--md ./models/
—--mn broapt-jast
scripts:
- ${PYTHON3} ./JaSt/clustering/classifier.py
-—f ${BROAPT_PATH}
--m ./models/broapt-jast
report: "false"
octet-stream: &lmd

LMD
workdir: ${API_ROOT}/application/octet—-stream/LMD
environ:
LMD_LOG: /var/log/bro/tmp/
install:
- apt-get install -y —--no-install-recommends git

- test -d ./linux-malware-detect/ ||
git clone https://github.com/rfxn/linux-malware-detect.git
— S${SHELL} install.sh
report: ${SHELL} detect.sh
vnd.android.package-archive:
AndroPyTool
remote: true
workdir: AndroPyTool
environ:
ANDROID HOME: SHOME/android-sdk—1linux
PATH: SPATH:SANDROID HOME/tools
PATH: SPATH:SANDROID _HOME/platform-tools
APK_LOG: /var/log/bro/tmp/
APK LOG: /home/traffic/log/bro/tmp/
install:
— S{SHELL} install.sh
— docker pull alexmyg/andropytool
report: S{PYTHON36} detect.py
report: ${SHELL} detect.sh
vnd.openxmlformats—officedocument: &officedocument
MaliciousMacroBot
workdir: S${API_ROOT}/application/vnd.openxmlformats—-officedocument/
environ:
MMB_LOG: /var/log/bro/tmp/
install:
- apt-get install -y —--no-install-recommends git
- test -d ./MaliciousMacroBot/ ||
git clone https://github.com/egaus/MaliciousMacroBot.git
- ${PYTHON36} -m pip install ./MaliciousMacroBot/
report: ${PYTHON36} MaliciousMacroBot-detect.py
shared: officedocument
msword: *officedocument
vnd.ms—x: +officedocument

(continues on next page)

4.2. BroAPT-App Framework 71

BroAPT, Release 2020.03.14

(continued from previous page)

vnd.openxmlformats—-officedocument: *officedocument
vnd.openxmlformats—-officedocument.x: *officedocument
x—executable:
ELF Parser
remote: false
environ:
ELF_LOG: /var/log/bro/tmp/
ELF_LOG: /home/traffic/log/bro/tmp/
ELF_SCORE: 100
workdir: ELF-Parser
install:
- apt-get update
- apt-get install -y —--no-install-recommends \
cmake \
g++ \
gce \
git \
libboost-all-dev \
make
- test -d ./elfparser/ ||
git clone https://github.com/Jjacob-baines/elfparser.git
- ${SHELL} build.sh
report: ${SHELL} detect.sh

APIs for ‘“audio’ media type
audio:

Default API for missing MIME types
example:
environ:
sleep interval
VT_INTERVAL: 30
max retry for report
VT_RETRY: 10
percentage of positive threshold
VT_PERCENT: 50
VI API key

path to VT file scan reports
VT_LOG: /var/log/bro/tmp/
report: ${PYTHON36} virustotal.py || exit 0 # always EXIT SUCCESS

APIs for “font' media type
font:

APIs for "image’ media type
image:

APIs for "“message’ media type
message:

APIs for "model’ media type
model:

APIs for ‘multipart’ media type
multipart:

(continues on next page)

72 Chapter 4. API Reference

BroAPT, Release 2020.03.14

(continued from previous page)

APIs for "text media type
text:
html: «Imd
javascript: xjavascript
x—-c: *1lmd
x-perl: «lmd
x-php: *1lmd

APIs for ‘video ' media type
video:

Caution: For bundled implementation, the runtime of local APIs are in the CentOS 7 Docker container.

For cluster implementation, the runtime of local APIs are in the Ubuntu 16.04 Docker container.

4.2.3 Wrapper Scripts

For the Docker container, we have created some Shell/Bash wrapper scripts to make the life a little bit better.

Bundled Implementation

File location source/client/init.sh

As the BroAPT-App framework is already integrated into the source codes, there’s no need to another wrapper script
to start the BroAPT-App framework. It shall be run directly after the BroAPT-Core framework.

#!/usr/bin/env bash
set —aex

change curdir
cd /broapt

load environs

if [-f .env] ; then
source .env

fi

compose Bro scripts
/usr/bin/python3.6 python/compose.py

run scripts
/usr/bin/python3.6 python 5@

sleep
sleep infinity

4.2. BroAPT-App Framework 73

BroAPT, Release 2020.03.14

Cluster Implementation

File location cluster/app/source/init.sh

#!/usr/bin/env bash
set —aex

change cwd
cd /source

load environs

if [-f .env] ; then
source .env

fi

run scripts
/usr/bin/python3.6 python

sleep
sleep infinity

4.3 BroAPT-Daemon Server

The BroAPT-Daemon server is the main entry and watchdog for the BroAPT system. For more information about the
server, please refer to previous documentation at BroAPT-App Detection Framework.

4.3.1 Module Entry

File location
* Bundled implementation: source/server/python/__init__ .py
¢ Cluster implementation: cluster/daemon/python/__init__ .py

This file merely modifies the sy s . path so that we can import the Python modules as if from the top level.

4.3.2 System Entrypoint

File location
* Bundled implementation: source/server/python/__main__.py
* Cluster implementation: cluster/daemon/python/__main__.py

This file wraps the whole system and make the python folder callable as a module where the __main__ .py will
be considered as the entrypoint.

run ()
Start the Flask application and Docker watchdog.

74 Chapter 4. API Reference

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://flask.palletsprojects.com

BroAPT, Release 2020.03.14

4.3.3 Command Line Interface

File location
¢ Bundled implementation: source/server/python/cli.py
¢ Cluster implementation: cluster/daemon/python/cli.py
For options and configuration details, please refer to configuration documentations.

parse_args ()
Parse command line arguments.

Returns Parsed command line arguments.
Return type argparse.Namespace

parse_env ()
Parse provided dotenv files for the command line argument parser as default values.

Returns Parsed dotenv values.

Return type Dict[str, Any]

4.3.4 Docker Watchdog

File location
* Bundled implementation: source/server/python/compose.py
* Cluster implementation: cluster/daemon/python/compose.py
This module provides a handy way to always keep the underlying BroAPT system in Docker containers running.

compose .docker_compose ()
A context to manager Docker containers. This function will start watch_container () as a background
process.

Note: When start, the function will start the Docker containers through start_container ().

Before exit, the function will toggle the value of UP_FLAG to False and wait for the process to exit. And
gracefully stop the Docker containers through stop container ().

compose.watch_container ()
Supervise the status of Docker containers while the system is running, i.e. UP_FLAG is True.

Raises ComposeWarning — If fail to poll status of Docker containers.

compose.start_container ()
Start Docker container using Docker Compose in detached mode.

compose.stop_container ()
Stop Docker container gracefully using Docker Compose, and clean up Docker caches.

compose . flask_exit (signum: Optional[signal.Signals] = None, frame: Optional[types.FrameType] =

None)
Flask exit signal handler. This function is registered as handler for const.KILIL SIGNAL through

register().

compose.register ()
Register f1ask_exit () assignal handler of const.KILI, SIGNAL.

4.3. BroAPT-Daemon Server 75

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://flask.palletsprojects.com

BroAPT, Release 2020.03.14

compose.UP_FLAG = multiprocessing.Value('B', True)
If the BroAPT system is actively running.

exception compose.ComposeWarning
Bases Warning

Warn if fail to poll status of Docker containers.

4.3.5 Common Constants

File location
* Bundled implementation: source/server/python/const.py
¢ Cluster implementation: cluster/daemon/python/const.py
const .KILL_SIGNAL
Type int
Environ BROAPT KILI, SIGNAL
Daemon kill signal.
const .SERVER_NAME_ HOST
Type str
Environ BROAPT_SERVER_HOSTs
The hostname to listen on.
const .SERVER_NAME_PORT
Type int
Environ BROAPT SERVER _PORT
const .DOCKER_COMPOSE
Type str
Environ BROAPT DOCKER_COMPOSE
Path to BroAPT’s compose file.
const .DUMP_PATH
Type str
Environ BROAPT DUMP_PATH
Path to extracted files.
const .LOGS_PATH
Type str
Environ BROAPT LOGS_PATH
Path to log files.
const .API_LOGS

Type str
Environ BROAPT API ILOGS

76 Chapter 4. API Reference

BroAPT, Release 2020.03.14

Path to API runtime logs.
const .API_ROOT
Type str
Environ BROAPT API_ROOT
Path to detection APIs.
const .INTERVAL
Type float
Environ BROAPT INTERVAL
Sleep interval.
const .MAX RETRY
Type str
Environ BROAPT MAX RETRY
Command retry.
const .EXIT_SUCCESS = 0
Type int
Exit code upon success.
const .EXIT_FAILURE = 1
Type int
Exit code upon failure.
const.FILE

Type str

os.path.join (LOGS_PATH, 'dump.log')

Path to file system database of processed extracted files.

const .FAIL

Type str

os.path.join (LOGS_PATH, 'fail.log'")

Path to file system database of failed processing extracted files.

4.3.6 Flask Application

File location
* Bundled implementation: source/server/python/daemon.py

 Cluster implementation: cluster/daemon/python/daemon.py

4.3. BroAPT-Daemon Server

77

BroAPT, Release 2020.03.14

URL Routing

daemon.root ()
Route /api
Methods GET
Display help message _help .
daemon.help_ ()
Route /api/v1.0
Methods GET
Display help message HELP_v1_0.
daemon.list_ ()
Route /api/v1.0/1list
Methods GET

List of detection process information.

0. Information of running processes from RUNNING:

'lid": ll- . ."’
"initied": null,
"scanned": true,

"reported: null,
"deleted": false

1. Information of finished processes from SCANNED:

* If the process exited on success:

{

'lid": "‘ . ‘",
"initied": null,
"scanned": true,

"reported: true,
"deleted": false

If the process exited on failure:

{
"id": "...",
"initied": null,
"scanned": true,
"reported: false,
"deleted": false

get_none ()
Route /api/v1.0/report
Methods GET

78

Chapter 4. API Reference

BroAPT, Release 2020.03.14

Display help message:

ID Required: /api/vl1.0/report/<id>

get (id_: str)
Route /api/v1.0/report/<id>
Methods GET
Fetch detection status of 1d_.

0. If id_ in RUNNING:

{

"id": ". . ."’
"initied": null,
"scanned": false,

"reported: null,
"deleted": false

1. If id_ in SCANNED:

* If the process exited on success:

{
"id": "...",
"initied": null,
"scanned": true,
"reported: true,
"deleted": false

If the process exited on failure:

{

Ilidll: ll. . 'II’
"initied": null,
"scanned": true,

"reported: false,
"deleted": false

2. If id_ not found, raises 404 Not Found with id_not_ found ().

daemon.scan ()
Route /api/v1.0/scan
Methods POST
Perform remote detection on target file.
The POST data should be a JSON object with following fields:
Parameters
* name (string) - path to the extracted file
* mime (string) - MIME type

* uuid (string) — unique identifier

4.3. BroAPT-Daemon Server

79

https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

* report (string | string/[])—report generation commands
* shared (string) - shared detection API identifier
* inited (boolean)— APl initialised
» workdir (string)— working directory
e environ (object) — environment variables
* install (string | string[])- initialisation commands
e scripts (string | string/[])- detection commands
If NO JSON data provided, raises 400 Bad Request with invalid info().

After performing detection process.process () on the target file, returns a JSON object containing detec-
tion report:

0. If detection exits on success:

{

A\l idll . n n

: LGy,
"initied": true,
"scanned": true,
"reported: true,
"deleted": false

1. If detection exists on failure:

* If detection fails when initialising:

{

llidll: ll...ll,
"initied": false,
"scanned": true,
"reported: false,
"deleted": false

* If detection fails when processing:

{

n idll . " n

: Loy
"initied": true,
"scanned": true,
"reported: false,
"deleted": false

delete_none ()
Route /api/v1.0/delete
Methods DELETE

Display help message:

ID Required: /api/vl1.0/delete/<id>

delete (id_: str)
Route /api/v1.0/delete/<id>

80 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

Methods DELETE
Delete detection status of 1d_ .

0. If id_ in RUNNING:

{
"id": "...",
"initied": null,
"scanned": false,
"reported: null,
"deleted": true

1. If id_ in SCANNED:

« If the process exited on success:

{
llid": "- . -",
"initied": null,
"scanned": true,
"reported: true,
"deleted": true

If the process exited on failure:

{
"id": "...",
"initied": null,
"scanned": true,
"reported: false,
"deleted": true

2. If id_ not found:

{
"id": "...",
"initied": null,
"scanned": null,
"reported: null,
"deleted": true

Error Handlers

daemon.invalid_id (error: Exception)
Handler of ValueError.

"status": 400,
"error": "...",
"message": "invalid ID format"

4.3. BroAPT-Daemon Server

81

https://docs.python.org/3/library/exceptions.html#Exception

BroAPT, Release 2020.03.14

daemon.invalid_info (error: Exception)
Handler of 400 Bad Request and KeyError.

{
"status": 400,
"error": "...",
"message": "invalid info format"

daemon.id_not_found (error: Exception)
Handler of 404 Not Found.

{
"status": 404,
"error": "...",
"message": "ID not found"

Dataclasses

class daemon.INFO
A dataclass for requested detection API information.

name: str
Path to the extracted file.

uuid: str
Unique identifier of current process.

mime: str
MIME type.

report: str
Report generation command.

inited: manager.Value
Initied flag.

locked: multiprocessing.Lock
Multiprocessing runtime lock.

workdir: str
API working directory.

environ: Dict[str, Any]
API runtime environment variables.

install: List[Union[str, List[str]]]
List of installation commands.

scripts: List[Union[str, List[str]]]
List of detection commands.

82

Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://www.python.org/dev/peps/pep-0557
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

Constants

daemon.app = flask.Flask(_ _name_)
Flask application.

daemon.HELP_v1l _0: str

BroAPT Daemon APIv1.0 Usage:

- GET /api/v1.0/list
GET /api/v1.0/report/<id>
- POST /api/v1.0/scan data={"key": "value"}

- DELETE /api/vl.0/delete/<id>

daemon._ _help : str

BroAPT Daemon API Usage:

v1.0
- GET /api/v1.0/1list
- GET /api/vl1.0/report/<id>
POST /api/v1.0/scan data={"key": "value"}

- DELETE /api/v1.0/delete/<id>

daemon.manager = multiprocessing.Manager ()
Multiprocessing manager instanace.

daemon .RUNNING = manager.list ()
Type List [uuid.UUID]
List of running detection processes.
daemon.SCANNED = manager.dict ()
Type Dict [uuid.UUID, bool]
Record of finished detection processes and exit on success.
daemon.APILOCK = manager.dict ()
Type Dict[str, multiprocessing.Lock]
Record of API multiprocessing locks.
daemon.APIINIT = manager.dict ()
Type Dict[str, multiprocessing.Value]

Record of API initialised flags.

4.3. BroAPT-Daemon Server

83

https://flask.palletsprojects.coms
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

BroAPT, Release 2020.03.14

4.3.7 Detection Process

File location
* Bundled implementation: source/server/python/process.py
¢ Cluster implementation: cluster/daemon/python/process.py

process.process (info: INFO)
Process extracted files with detection information.

Parameters info (INFO) — File to be processed.
Returns If detection process exit on success.
Return type bool

process.make_env (info: INFO)
Generate a dictionary of environment variables based on request information.

Parameters info (INFO) — Detection request information.
Return type Dict[str, Any]

process.make_cwd (info: INFO)
Generate the working directory of detection information.

Parameters info (INFO) — Detection request information.
Returns Path to the working directory.
Return type str

process.init (info: INFO)
Run the initialisation commands of detection information.

Parameters info (INFO) — Detection request information.
Returns Exit code (const .EXIT _SUCCESS or const .EXIT FAILURE).
Return type int

process.run (command: Union[str, List[str]], info: INFO, file: str = 'unknown')
Run command with provided settings.

Parameters
e command (Union[str, List[str]])- Command toexecute.
* info (INFO) — Detection request information.
* file (str)— Stem of output log file.
Returns Exit code (const.EXIT_SUCCESS or const.EXIT_FATILURE).

Return type int

84 Chapter 4

. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

BroAPT, Release 2020.03.14

4.3.8 Auxiliaries & Utilities

File location
* Bundled implementation: source/server/python/util.py
¢ Cluster implementation: cluster/daemon/python/util.py

@utils.suppress
A decorator that suppresses all exceptions.

utils.file_lock (file: str)
A context lock for file modification with a file system lock.

Parameters f£ile (st r)— Filename to be locked in the context.

utils.print_f£ile (s: Any, file: str)
Wrapper function to process-safely print s into file.

Parameters
* s (str)— Content to be printed.
» file (str) - Filename of output stream.

utils.temp_env (env: Dict[str, Any])
A context for temporarily change the current os . environ.

Parameters env (Dict [str, Any])- Environment variables.

For deployment issues, please refer to quickstart.

4.4 Miscellaneous & Auxiliary

4.4.1 MIME-Extension Mappings
Generate Mappings

File location
* Bundled implementation: source/utils/mime2ext.py

* Cluster implementation: cluster/utils/mime2ext.py

Note: This script support all version since Python 2.7.

BROAPT FORCE_UPDATE
Type bool
Default False

Set the environment variable to True if you wish to update existing mappings; otherwise, it will only add
mappings of new MIME types.

The script fetch the MIME types from [ANA registries and try to automatically match them with the file extensions
through mimetypes database. It will then dump the mappings to corresponding file-extensions.bro as
discussed in the documentation.

Should there be an unknown MIME type, it will prompt for user to type in the corresponding file extensions.

4.4. Miscellaneous & Auxiliary 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/library/os.html#os.environ
https://docs.python.org/3/library/stdtypes.html#str
https://www.iana.org/assignments/media-types/media-types.xhtml
https://docs.python.org/3/library/mimetypes.html
https://docs.python.org/3/library/mimetypes.html#module-mimetypes

BroAPT, Release 2020.03.14

Fix Missing Mappings

File location
¢ Bundled implementation: source/utils/fix-missing.py

¢ Cluster implementation: cluster/utils/fix-missing.py

Note: This script support all version since Python 2.7.

BROAPT_LOGS_PATH
Type str (path)
Default /var/log/bro/
Path to system logs.

In the BroAPT system, when encountering a MIME type not present in the file-extensions.bro database, it
will record such MIME type into a log file under the log path const.LOGS _PATH, named processed_mime.
log.

The script will read the log file and try to update the file—-extensions.bro database with these found-missing
MIME types.

4.4.2 Bro Script Composers

HTTP Method Registry

File location source/utils/http-methods.py

Note: This script support all version since Python 2.7.

As discussed in BroAPT-Core Extration Framework, we have introduced full HTTP methods registry to the BroAPT
system in Bro script sites/const/http-methods.bro.

The script will read the IANA registries and update the builtin HTTP : : http_methods with the fetched data.

HTTP Message Headers

File location source/utils/http-header—-names.py

Note: This script support all version since Python 2.7.

As discussed in BroAPT-Core Extration Framework, we have introduced full HTTP message header registry to the
BroAPT system in Bro script sites/const/http-header-names.bro.

The script will read the IANA registries and update the builtin HTTP : : header_names with the fetched data.

86 Chapter 4. API Reference

https://www.iana.org/assignments/http-methods/http-methods.xhtml
https://www.iana.org/assignments/message-headers/message-headers.xhtml

BroAPT, Release 2020.03.14

FTP Commands & Extensions

File location source/utils/ftp-commands.py

Note: This script support all version since Python 2.7.

As discussed in BroAPT-Core Extration Framework, we have introduced full FTP commands ands extensions registry
to the BroAPT system in Bro script sites/const/ftp-commands.bro.

The script will read the IANA registries and update the builtin FTP : : 1logged_commands with the fetched data.

4.5 System Runtime

The whole BroAPT folder in the Docker container (of bundled implementation) at runtime would be like:

project root

/broapt/
entrypoint wrapper script
— init.sh
Python source codes
— python
setup PYTHONPATH
— __init__ .py
entry point
— __main__ .py

config parser
—— cfgparser.py

Bro script composer
—— compose.py
global constants
—— const.py
Bro log parser
—— logparser.py
BroAPT-Core logic
—— process.py
multiprocessing support
— remote.py
BroAPT-App logic
— scan.py
Python hooks
—— sites

register hooks
__init__.py

utility functions

L— utils.py

Bro source scripts

-— scripts

load FileExtraction module
— _ load__ .bro

configurations

— config.bro

MIME-extension mappings
— file-extensions.bro

(continues on next page)

4.5. System Runtime 87

https://www.iana.org/assignments/ftp-commands-extensions/ftp-commands-extensions.xhtml

BroAPT, Release 2020.03.14

(continued from previous page)

protocol hooks
+—— hooks/
extract DTLS
— extract-dtls.bro
extract FTP_DATA
— extract-ftp.bro
extract HTTP
— extract-http.bro
extract IRC_DATA
— extract-irc.bro
extract SMTP
— extract-smtp.bro
core logic
— main.bro
MIME hooks
— plugins/
extract all files
— extract-all-files.bro
extract by BRO_MIME
— extract-white-list.bro
generated scripts by BRO_MIME

site functions by user
L— sites/

load site functions
— _ load___.bro

where /broapt/python/sites is the path for custom Python hooks and /broapt/scripts/sites/ isthe
path for custom Bro scripts.

And most importantly, the very entrypoint for the whole BroAPT system is as following:

#!/usr/bin/env bash
set —aex

change curdir
cd /broapt

load environs

if [-f .env] ; then
source .env

fi

compose Bro scripts
/usr/bin/python3.6 python/compose.py

run scripts
/usr/bin/python3.6 python 5@

sleep
sleep infinity

0. The script will first change the current working directory to the root path /broapt/.

1. If there is a . env dotenv file for environment variables configuration, it will be loaded and saved into current
runtime scope (set -a).

88 Chapter 4. API Reference

BroAPT, Release 2020.03.14

2. Generate Bro scripts based on environment variables.

3. Start the main application, i.e. BroAPT-Core and BroAPT-App frameworks.

4.6 Developer Notes

Since the BroAPT system was not intended for packaging and distribution, we didn’t provide a setup.py to wrap
everything as a broapt module. However, in a quite hacky way, we injected the sys . path import path, so that we
can directly import the files as if they’re at top levels.

As you can see in the /broapt/python/sites/__init__ .py, i.e. the module entry of Python hooks is as
following:

—+— coding: utf-8 —#-—
pylint: disable=all

HEFAFAAAFAAAAAAFAAARARFAFAFARAAFAHARARAAFA R A RA AR A A AFA R RF AR A A FAHA A
site customisation

import os

import sys

sys.path.insert (0, os.path.dirname (os.path.realpath(file)))
sys.path.insert (0, os.path.dirname (os.path.dirname (os.path.realpath(file))))
FAARFAAHAAAAAAHAAFHARFFAAHFAFFAAHFAAHAAAH A HA A H AR FF A HF A H A AR H A A A

from extracted files import generate_log as info_log
from http parser import generate as http_log, close as http_log_exit

log analysis hook list
HOOK = [

http_1log,

info_log,

]

exit hooks
EXIT = |
http_log_exit,

where extracted_files refers to /broapt/python/sites/extracted_files.py and
http_parserrefersto /broapt/python/sites/http_parser.py.

You may have noticed the lines in site customisation modified the sys.path import path so that we don’t need to
worry about importing stuff from the BroAPT Python source codes.

If you wish to use auxiliary functions and module constants from the main application, then you can still import them
as if from the top level:

path to logs from module constants
from const import LOGS_PATH

Bro log parsing utilities

from logparser import parse

auxiliary functions for BroAPT
from utils import is_nan, print_file

Cybersecurity has long been a significant subject under discussion. With rapid evolution of new cyber attack methods,
the threat of Internet is becoming more and more intense. Advanced persistent threat (APT) has become a main source

4.6. Developer Notes 89

BroAPT, Release 2020.03.14

of cybersecurity events. It is now even more important to identify and classify network traffic by direct analysis on the
traffic itself in an accurate and timely manner.

We hereby describe BroAPT system, an APT detection system based on Bro IDS (old name at time of implementation,
now known as Zeek IDS). The system monitors APT based on comprehensive analysis of the network traffic. It
is granted with high performance and extensibility. It can reassemble then extract files transmitted in the traffic,
analyse and generate log files in real-time; it can also classify extracted files through targeted malicious file detection
configuration; and it detects APT attacks based on analysis of the log files generated by the system itself.

The BroAPT system consists of two major parts. One is the core functions. This part runs in a Docker container,
which currently is based on CentOS 7 image. The core functions can be described by two different components: an
extraction framework BroAPT-Core and a detection framework BroAPT-App. The other is the command line interface
(CLI) and a daemon server BroAPT-Daemon, which is a RESTful API server based on Flask framework. This part
runs on the host machine of the Docker container.

CLI is the entrypoint for the whole BroAPT system. When running, the CLI configures the daemon server and bring
it up, then start the Docker container with core functions. Within BroAPT-Core extraction framework, it will read in a
PCAP file and process it with Bro IDS, which will reassemble then extract files transmitted by the traffic and generate
log files from its logging system. Afterwards, BroAPT-App detection framework will take the extracted file, parse
it’s file name to extract MIME type information of this file. Then the framework will fetch specific detection API of
such MIME type and process it to detect if the file is malicious. If needed, the framework will generate a request to
BroAPT-Daemon server to process a remote (privileged) detection on such file.

Of BroAPT-Core extraction framework, it mainly has three steps. First, file check. The system will scan for new
PCAP files and send them to the BroAPT-Core extraction framework. Second, Bro analysis. The system will process
the PCAP with file extraction scripts, reassemble then extract files transmitted through the traffic. The extraction can
be grouped by MIME type of files or application layer protocol which transmitted the file. Also, the user may load
external Bro scripts as site functions to process along with the main extraction scripts. Third, post-processing and
cross-analysis. After processing the PCAP file with Bro IDS, the system will have several extracted files and a bunch
of log files. Besides those standard Bro logs, there will be logs defined by the site functions and generated by the
logging system of Bro IDS. Then the system, by default, will generate connection information of the extracted files
through Bro logs, which includes timestamp, source and destination, MIME type, as well as hash values. Plus, the
user may also register Python hooks to the system, as they will be called every time a PCAP is processed. These hooks
can to used to provide further investigation upon the logs generated by Bro IDS.

To work along with Bro intrusion detection system (IDS), the system is implemented in a multi-processing manner.
Since CPython’s multi-threading is not working as expected — cannot perform parallel processing — we implemented
BroAPT system with full support of multi-processing to accelerate the main processing logic. Synchronised queues
are used to communicate and coordinate processes within the system: in BroAPT-Core extraction framework, we used
a queue to send basic information about the extracted files to BroAPT-App detection framework, and another queue to
procede Python hooks with the generated log files.

Currently, we have introduced several site functions and Python hooks to BroAPT system. There are six bunches of
Bro scripts. Constant definitions for common application layer protocols, such as HTTP and FTP, these constants are
fetched from IANA registry. Extend standard Bro log http.log with new entry of COOKIE information and data in
POST request. Calculate hash values of all files transmitted through network traffic. And two Bro modules to perform
phishing emails based on cross-analysis of SMTP and HTTP traffic. The Python hook function currently included is
to parse http.log then extract information of HTTP connections and generate a new log file.

As for BroAPT-App detection framework, we genetically designed the client-server remote detection framework based
on the support of BroAPT-Daemon server. Briefly, the BroAPT-App detection framework will take the extracted files
as input source. The system will perform file check to extract information from it. These information includes path
to the file, MIME type and unique identifier (UID) of such file, etc. Then the system will parse an API configuration
file to obtain a mapping of MIME type specific malicious file detection APIs. Based on the MIME type we had from
the file, the system will perform APT detection with the selected API. When detection, the system will firstly prepare
the working environment according to the API configuration: it will assign environment variables, change working
directory accordingly, expand variables defined in scripts then execute installations scripts. Afterwards, the system

90 Chapter 4. API Reference

https://www.zeek.org
https://flask.palletsprojects.com

BroAPT, Release 2020.03.14

will execute detection scripts, then report generation script to generate detection results for the target file. If a remote
detection is required, the system will prepare the request data, then post it to the BroAPT-Daemon server running on
the host machine. The BroAPT-Daemon server will process the detection ibid.

Speaking of installation, we introduced several attributes to manage and avoid resource competition. We used a
shared memory space to indicate whether such API has been proceded with installation. This indicator will avoid
reinstallation of APIs. It is shared with all MIME type specific APIs that sharing the same detection process, not just
processes using the same API. Additionally, we have a synchronised process lock to prevent parallel installation for
the same APIs. However, considering the APIs might fail due to network connection issue, we will try to rerun the
script if it fails.

We have by far introduced, six different APIs targeted for dozens of MIME types. We used VirusTotal as the ba-
sic general detection method for BroAPT, which will detect any MIME types that have no registered API; Virus-
Total aggregates many antivirus products and online scan engines to check for ciruses that the user’s own an-
tivirus may have missed, or to verify against any false positives. We used AndroPyTool to detect APK files
(MIME type: application/vnd.android.package—archive); AndroPyTool is a tool for extracting statis
and dynamic features from Android APKs, which combines different well-known Android application analysis
tools such as DroidBox, FlowDroid, Strace, AndroGuard or VirusTotal analysis. We used MaliciousMacroBot
to detect Office documents (MIME type: application/vnd.openxmlformats-officedocument, or
application/msword, application/vnd.ms—-excel, application/vnd.ms-powerpoint, etc.);
MaliciousMacroBot provides a powerful malicious file triage tool through clever feature engineering and applied
machine learning techniques like Random Forest and TF-IDF. We used ELF Parser to detect Linux ELF binaries
(MIME type: application/x—executable); ELF Parser is a static ELF analysis tool to quickly determine
the capabilities of an ELF binary through statis analysis. We used LMD to detect other common Linux exploitable
files (MIME type: application/octet-stream, text/html, text/x-c, text/x-perl, text/x-php,
etc.); LMD is a malware scanner for Linux systems based on threat data from network edge intrusion detection sys-
tems to extract malware that is actively being used in attacks and generates signatures for detection. And we used JaSt
to detect JavaScript files (MIME type: application/javascript or text/javascript); JaStis a tool to
syntactically detect malicious (obfuscated) JavaScript files based on machine learning and clustering algorithms.

As described above, BroAPT is an APT detection system based on Bro IDS with high extensibility and compatibility
with high-speed traffic. We tested BroAPT system with real-time traffic collected from the network edge of a college.
The system will extract all targeted files from an approximately 35G PCAP file within one minute. And the Bro
site functions introduced within BroAPT-Core extraction framework has no significant impact on performance of the
system, whilst the Python hook functions will smoothly work along and generate new log files as it intended to.
Also, the detection APIs we used in BroAPT-App detection system has proved that they are working perfectly with
reasonable false-positive rates. In a word, the BroAPT system is working as expected in the real network environment.

However, besides the implementation above, we have tried several other implementations during the project. We used
pure Python scripts based on PyPCAPKit (a multi-engine PCAP file analysis tool) with supoort of DPKT to reassemble
and extract files transmitted through the traffic, but the process efficiency was not quite good. Not to mension hybrid
implementation with Bro scripts logging TCP traffic data and Python or C/C++ programs to reassembly then extract
the traffic, and the miserable pure Bro implementation of TCP reassembly. At last, File Analysis framework of Bro
IDS proved its worthiness to the BroAPT system. And thus we adopted the current implementation.

Although our research on APT detection is quite preceding, the BroAPT system utilised Bro IDS and works as an
APT detection system which is compatible with high-speed network traffic. The system has been proved in practical
scenarios, and is the basis of follow-up researches on APT detection.

For more information, please refer to the Graduation Thesis of BroAPT (in Chinese).

4.6. Developer Notes 91

https://github.com/alexMyG/AndroPyTool
https://github.com/egaus/MaliciousMacroBot
http://elfparser.com
https://www.rfxn.com/projects/linux-malware-detect
https://github.com/Aurore54F/JaSt
https://github.com/JarryShaw/PyPCAPKit
https://dpkt.readthedocs.io

BroAPT, Release 2020.03.14

92

Chapter 4. API Reference

CHAPTER
FIVE

LISCENSING

This work is in general licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national License. Part of this work is derived and copied from Zeek, Broker, and file-extraction all with BSD 3-Clause
License, which shall be dual-licensed under the two licenses.

Original developed part of this software and associated documentation files (the “Software’) are hereby licensed under
the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. No permits are
foreordained unless granted by the author and maintainer of the Software, i.e. Jarry Shaw.

93

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/zeek/zeek
https://github.com/zeek/broker
https://github.com/hosom/file-extraction
https://github.com/JarryShaw

BroAPT, Release 2020.03.14

94

Chapter 5. Liscensing

CHAPTER
SIX

INDICES AND TABLES

* genindex
¢ modindex

¢ search

95

BroAPT, Release 2020.03.14

96

Chapter 6. Indices and tables

Symbols

_ main__ .Entry (built-in class), 52

__main__ .FILE_REGEX (built-in variable), 51

__main__ .MIME (built-in class), 52
_ _main__ .PCAP_MGC (built-in variable), 34
__main__.check_history()
built-in function, 35,54
__main__.is_pcap()
built—-in function, 34
__main__ .listdir()
built-in function, 34, 54
__main___.main ()
built-in function, 35, 54
__main__.main_with_args ()
built-in function, 35
_ _main___.main_with_no_args()
built-in function, 35
__main__ .parse_args()
built-in function, 35

B

BROAPT_API_LOGS, 58, 76
BROAPT_API_ROOT, 57,77
BROAPT_APP_CPU, 57
BROAPT_APP_INTERVAL, 57
BROAPT_BARE_MODE, 41
BROAPT_CORE_INTERVAL, 41
BROAPT_CPU, 8, 40
BROAPT_DOCKER_COMPOSE, 76
BROAPT_DUMP_PATH, 32, 36, 38, 41, 57,76
BROAPT_ENTROPY_MODE, 32, 36, 38
BROAPT_FILE_BUFFER, 32, 36, 38
BROAPT_HASH_MD5, 31, 36, 38
BROAPT_HASH_SHAL, 31, 36, 38
BROAPT_HASH_SHA256, 31, 36, 38
BROAPT_HOOK_CPU, 41
BROAPT_INTERVAL, 41, 57,77
BROAPT_JSON_MODE, 32, 36, 39
BROAPT_KILL_SIGNAL, 76
BROAPT_LOAD_MIME, 15, 32, 33, 36, 37, 39
BROAPT_LOAD_PROTOCOL, 32, 33, 37, 39
BROAPT_LOGS_PATH, 31, 36, 37,41, 57,76

BROAPT_MAX_RETRY, 77
BROAPT_MIME_MODE, 31, 36, 38, 41
BROAPT_NAME_HOST, 58
BROAPT_NAME_PORT, 58
BROAPT_NO_CHKSUM, 41
BROAPT_PCAP_PATH, 31, 36, 37, 41
BROAPT_SCAN_CPU, 10, 57
BROAPT_SERVER_HOSTs, 76
BROAPT_SERVER_PORT, 76
BROAPT_SIZE_LIMIT, 32, 36, 38
BROAPT_X509_MODE, 32, 36, 38
built-in function

INDEX

_ _main__.check_history(), 35,54

__main__.is_pcap(),34

_ main__ .listdir (), 34,54
__main___.main (), 35,54

_ _main__ .main_with_args(), 35

_ main__.main_with_no_args (), 35

_ _main__ .parse_args (), 35
cfgparser.parse (), 55
cfgparser.parse_cmd (), 55
communicate (), 46
compose.compose (), 37
compose.docker_compose (), 75
compose.escape (), 37
compose.file_salt (), 37
compose.flask_exit (),75
compose.register (), 75
compose.start_container(),75
compose.stop_container (), 75
compose.watch_container (), 75
daemon.help_ (), 78
daemon.id_not_found (), 82
daemon.invalid_id(), 81
daemon.invalid_info (), 81
daemon.list_(),78
daemon.root (), 78
daemon.scan (), 79
delete (), 80
delete_none (), 80

get (), 79

get_none (), 78

97

BroAPT, Release 2020.03.14

hook (), 47

logparser.
logparser.
logparser.
.enum_parser (), 45

logparser

logparser.
logparser.
logparser.
logparser.
logparser.
logparser.
logparser.
logparser.
.str_parser (), 44

logparser

logparser.
logparser.
logparser.

addr_parser (), 44
bool_parser(),45
count_parser (), 44

float_parser (), 44
int_parser (), 44
interval_parser (), 44
main (), 46

parse (), 45
parse_text (), 45
port_parser (), 44
set_parser (), 43

subnet_parser (), 44
time_parser(),44
vector_parser (),43

parse_args (), 75
parse_env (), 75
process.init (), 62, 84
process.issue (), 62
process.make_cwd (), 61, 84
process.make_env (), 61, 84
process.process (), 46, 61, 84
process.run (), 62, 84
remote. join (), 48
remote. join_dump (), 53
remote. join_logs (), 48
remote.remote (), 47,63
remote.remote_dump (), 53
remote.remote_logs (), 47
)

cfgparser.
cfgparser.
cfgparser.
cfgparser.

API_INIT (built-in variable), 56
API_LOCK (built-in variable), 56
ConfigError, 56

DefaultNotFoundError, 56

cfgparser .MEDIA_TYPE (built-in variable), 56
cfgparser.parse ()

built-in function, 55
cfgparser.parse_cmd ()

built-in function, 55
cfgparser.ReportNotFoundError, 56
close (logparser. TEXTInfo attribute), 43
communicate ()

built-in function, 46
compose .BOOLEAN_STATES (built-in variable), 37
compose.compose ()

built-in function, 37
compose.ComposeWarning, 76
compose.docker_compose ()

built-in function, 75
compose .DUMP_PATH (built-in variable), 38
compose .ENTR_REGEX (built-in variable), 39
compose .ENTROPY_MODE (built-in variable), 38
compose.escape ()

built-in function, 37
compose.FILE_REGEX (built-in variable), 40
compose.file_salt ()

built-in function, 37
compose .FILE_TEMP (built-in variable), 39
compose.flask_exit ()

built-in function, 75
compose.HASH_MODE_MDS5 (built-in variable), 38

remote.remote_proc (), 47

run (), 74
scan.init (), 60
scan.issue (), 61
scan.lookup (), 53

scan

scan

scan

.make_cwd (), 60
scan.
.process (), 60
scan.
.run (), 60
scan.

make_env (), 60
remote (), 63

scan (), 53

utils.file_lock (), 48, 63,85
utils.is_nan (), 49
utils.print_file(),49, 63,85
utils.redirect (), 49
utils.suppress(),48, 63,85
utils.temp_env (), 63,85
wrapper_func (), 47
wrapper_logs (), 47

C

cfgparser.APTI (built-in class), 55
cfgparser.API_DICT (built-in variable), 56

compose.HASH_MODE_SHA1 (built-in variable), 38
compose.HASH_MODE_SHA256 (built-in variable),
38
compose.HASH_REGEX_MD5 (built-in variable), 39
compose.HASH_REGEX_SHA1L (built-in variable), 39
compose.HASH_REGEX_SHA256 (built-in variable),
39

compose

compose.
.LOAD_MIME (built-in variable), 39

compose

compose.
compose.
compose.
compose.
.MIME_MODE (built-in variable), 37

compose

compose.
.PATH_REGEX (built-in variable), 40

compose

compose.
.register ()

compose

. JSON_MODE (built-in variable), 38

JSON_REGEX (built-in variable), 40

LOAD_PROTOCOL (built-in variable), 39

LOAD_REGEX (built-in variable), 40
LOGS_PATH (built-in variable), 37

LOGS_REGEX (built-in variable), 39
MIME_REGEX (built-in variable), 39

PCAP_PATH (built-in variable), 37

built-in function, 75

compose.
compose.
compose.

ROOT (built-in variable), 37
SALT_REGEX (built-in variable), 40
SIZE_LIMIT (built-in variable), 38

98

Index

BroAPT, Release 2020.03.14

compose.SIZE_REGEX (built-in variable), 40 built-in function, 78
compose.start_container () daemon .HELP_v1_0 (built-in variable), 83

built-in function, 75 daemon.id_not_found()
compose.stop_container () built-in function, 82

built-in function,75 daemon . INFO (built-in class), 82
compose .UP_FLAG (built-in variable), 75 daemon.invalid_id ()
compose.watch_container () built-in function, 81

built-in function, 75 daemon.invalid_info ()
compose.X509_MODE (built-in variable), 38 built-in function, 81
compose.X509_REGEX (built-in variable), 39 daemon.list_ ()
const .API_DICT (built-in variable), 58 built-in function, 78
const .API_LOGS (built-in variable), 57, 76 daemon .manager (built-in variable), 83
const .API_ROOT (built-in variable), 57, 77 daemon.root ()
const .BARE_MODE (built-in variable), 41 built-in function, 78
const .BOOLEAN_STATES (built-in variable), 40 daemon . RUNNING (built-in variable), 83
const .CPU_CNT (built-in variable), 40, 56 daemon.scan ()
const .DOCKER_COMPOSE (built-in variable), 76 built-in function, 79
const .DUMP (built-in variable), 58 daemon . SCANNED (built-in variable), 83
const .DUMP_PATH (built-in variable), 41, 57, 76 delete ()
const .EXIT_FAILURE (built-in variable), 57, 77 built-in function, 80
const .EXIT_SUCCESS (built-in variable), 57, 77 delete_none ()
const .FAIL (built-in variable), 58, 77 built-in function, 80
const .FILE (built-in variable), 41, 77
const .FILE_REGEX (built-in variable), 58 E
const . HOOK_CPU (built-in variable), 41 environ (cfgparser.API attribute), 55
const . INTERVAL (built-in variable), 40, 57, 77 environ (daemon.INFO attribute), 82
const .KILL_SIGNAL (built-in variable), 76 environment variable
const .LOGS_PATH (built-in variable), 41, 57, 76 BROAPT_API_LOGS, 7,11, 58,76
const .MAX_RETRY (built-in variable), 57, 77 BROAPT_API_ROOT, 7, 11,57,77
const .MIME_MODE (built-in variable), 41 BROAPT_APP_CPU, 10, 57
const .MIME_REGEX (built-in variable), 59 BROAPT_APP_INTERVAIL, 11,57
const .NO_CHKSUM (built-in variable), 41 BROAPT_BARE_MODE, 9, 41
const .PCAP_PATH (built-in variable), 41 BROAPT_CORE_CPU, 8
const .QUEUE (built-in variable), 42 BROAPT_CORE_INTERVAL, 8, 41
const .QUEUE_DUMP (built-in variable), 59 BROAPT_CPU, 8, 40
const .QUEUE_LOGS (built-in variable), 42 BROAPT_DOCKER_COMPOSE, 6, 76
const .ROOT (built-in variable), 40, 56 BROAPT_DUMP_PATH, 6, 8, 32, 36, 38,41, 57,76
const .SERVER_NAME (built-in variable), 58 BROAPT_ENTROPY_MODE, 9, 32, 36, 38
const .SERVER_NAME_HOST (built-in variable), 58, BROAPT_FILE_BUFFER, 10, 32, 36, 38

76 BROAPT_FORCE_UPDATE, 85
const .SERVER_NAME_PORT (built-in variable), 58, BROAPT_HASH_MDS5, 9, 31, 36, 38
76 BROAPT_HASH_SHAL,9, 31, 36, 38
const . STDERR (built-in variable), 42 BROAPT_HASH_SHA256,9, 31, 36, 38
const .STDOUT (built-in variable), 42 BROAPT_HOOK_CPU, 10, 41
const . TIME (built-in variable), 42 BROAPT_INTERVAL, 7,8, 10,41,57,77
context (logparserJSONInfo attribute), 43 BROAPT_JSON_MODE, 9, 32, 36, 39
context (logparser TEXTInfo attribute), 43 BROAPT_KILL_SIGNAL, 6,76
BROAPT_LOAD_MIME, 9, 15, 32, 33, 36, 37, 39

D BROAPT_LOAD_PROTOCOL, 10, 32, 33, 37, 39
daemon.__help__ (built-in variable), 83 BROAPT_LOGS_PATH, 6, 8, 31, 36, 37, 41, 57, 76,
daemon .APIINIT (built-in variable), 83 86
daemon . APTILOCK (built-in variable), 83 BROAPT_MAX_RETRY, 7, 11,77
daemon . app (built-in variable), 83 BROAPT_MIME_MODE, 8, 31, 36, 38, 41
daemon.help_ () BROAPT_NAME_HOST, 11, 58

Index 99

BroAPT, Release 2020.03.14

BROAPT_NAME_PORT, 11, 58
BROAPT_NO_CHKSUM, 9, 41
BROAPT_PCAP_PATH, 8, 31, 36, 37, 41
BROAPT_SCAN_CPU, 10, 57
BROAPT_SERVER_HOST, 6
BROAPT_SERVER_HOSTs, 76
BROAPT_SERVER_PORT, 6, 76
BROAPT_SIZE_LIMIT, 10, 32, 36, 38
BROAPT_X509_MODE, 9, 32, 36, 38

exit_with_error (logparser. TEXTInfo attribute), 43

F

format (logparserJSONInfo attribute), 43
format (logparser TEXTInfo attribute), 43

G

get ()

built-in function, 79
get_none ()

built-in function, 78

H

hook ()
built-in function, 47

inited (cfgparser.API attribute), 55
inited (daemon.INFO attribute), 82
install (cfgparser.API attribute), 55
install (daemon.INFO attribute), 82

L

locked (c¢fgparser.API attribute), 55
locked (daemon.INFO attribute), 82
logparser.addr_parser ()
built-in function,44
logparser.bool_parser()
built-in function,45
logparser.count_parser ()
built—-in function, 44
logparser.empty_field (built-in variable), 43
logparser.enum_parser ()
built-in function,45
logparser.float_parser ()
built-in function, 44
logparser.int_parser ()
built-in function,44
logparser.interval_parser ()
built-in function, 44
logparser.JSONInfo (built-in class), 43
logparser.main ()
built-in function, 46
logparser.parse ()

built-in function, 45
logparser.parse_text ()
built-in function,45
logparser.port_parser ()
built-in function, 44
logparser.set_parser ()
built-in function,43

logparser.set_separator (built-in variable), 43

logparser.str_parser ()

built-in function, 44
logparser.subnet_parser ()

built-in function, 44
logparser.TEXTInfo (built-in class), 43
logparser.time_parser ()

built-in function, 44
logparser.type_parser (built-in variable), 45
logparser.unset_field (built-in variable), 43
logparser.vector_parser ()

built-in function,43

M

media_type (scan.MIME attribute), 52
mime (daemon.INFO attribute), 82
mime (scan.Entry attribute), 52

N

name (daemon.INFO attribute), 82
name (scan.MIME attribute), 52

O

open (logparser. TEXTInfo attribute), 43

P

parse_args ()

built-in function, 75
parse_env ()

built-in function, 75
path (logparser TEXTInfo attribute), 43
path (scan.Entry attribute), 52
process.ExtractWarning, 46
process.init ()

built—-in function, 62, 84
process.issue ()

built-in function, 62
process.make_cwd ()

built-in function, 61, 84
process.make_env ()

built-in function, 61, 84
process.process ()

built-in function, 46, 61, 84
process.run()

built—-in function, 62, 84
process.SALT_LOCK (built-in variable), 46
process.STDERR_LOCK (built-in variable), 46

100

Index

BroAPT, Release 2020.03.14

process.STDOUT_LOCK (built-in variable), 46

R

remote (c¢fgparser.API attribute), 55
remote.HookWarning, 48
remote . JOIN (built-in variable), 48
remote. join ()

built-in function, 48
remote.JOIN_DUMP (built-in variable), 53
remote. join_dump ()

built-in function, 53
remote.JOIN_LOGS (built-in variable), 48
remote. join_logs ()

built-in function, 48
remote.remote ()

built-in function, 47,63
remote.remote_dump ()

built-in function, 53
remote.remote_logs ()

built-in function, 47
remote.remote_proc ()

built-in function,47
report (cfgparser.API attribute), 55
report (daemon.INFO attribute), 82
REC

RFC 2616, 15

RFC 7230,15
run ()

built-in function, 74

S

scan.APIError, 61
scan.APIWarning, 61
scan.Entry (built-in class), 52
scan.init ()

built-in function, 60
scan.issue ()

built—-in function, 61
scan.lookup ()

built-in function, 53
scan.make_cwd ()

built-in function, 60
scan.make_env ()

built-in function, 60
scan .MIME (built-in class), 52
scan.process ()

built-in function, 60
scan.remote ()

built-in function, 63
scan.run ()

built—-in function, 60
scan.scan ()

built-in function, 53
scripts (cfgparser.API attribute), 55

scripts (daemon.INFO attribute), 82
shared (c¢fgparser.API attribute), 55
sites.EXIT (built-in variable), 49
sites.HOOK (built-in variable), 49
subtype (scan. MIME attribute), 52

U

utils.APIError, 62
utils.APIWarning, 62
utils.file_lock ()

built-in function, 48, 63, 85
utils.is_nan{()

built-in function, 49
utils.print_file()

built-in function, 49, 63, 85
utils.redirect ()

built-in function, 49
utils.suppress()

built-in function, 48, 63, 85
utils.temp_env ()

built-in function, 63,85
uuid (daemon.INFO attribute), 82
uuid (scan.Entry attribute), 52

W

workdir (cfgparser.API attribute), 55
workdir (daemon.INFO attribute), 82
wrapper_func ()

built-in function,47
wrapper_logs ()

built-in function, 47

Index

101

	Quickstart
	Installation
	Usage
	Repository Structure

	Configurations
	BroAPT-Daemon Server
	BroAPT-Core Framework
	BroAPT-App Framework

	Internal Frameworks
	BroAPT-Core Extration Framework
	BroAPT-App Detection Framework
	Implementation Details

	API Reference
	BroAPT-Core Framework
	BroAPT-App Framework
	BroAPT-Daemon Server
	Miscellaneous & Auxiliary
	System Runtime
	Developer Notes

	Liscensing
	Indices and tables
	Index

